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Abstract

An almost-Riemannian structure on a surface is a generalized Riemannian structure whose
local orthonormal frames are given by Lie bracket generating pairs of vector fields that can
become collinear. The distribution generated locally by orthonormal frames has maximal rank
at almost every point of the surface, but in general it has rank 1 on a nonempty set which
is generically a smooth curve. In this paper we provide a short introduction to 2-dimensional
almost-Riemannian geometry highlighting its novelties with respect to Riemannian geometry.
We present some results that investigate topological, metric and geometric aspects of almost-
Riemannian surfaces from a local and global point of view.

1 Introduction

The purpose of this paper is to present a generalization of Riemannian geometry that naturally
arises in the framework of control theory. A Riemannian distance on a smooth surface M can be
seen as the minimum-time function of an optimal control problem where admissible velocities are
vectors of norm one. The control problem can be written locally as

q̇ = uX(q) + vY (q) , u2 + v2 ≤ 1 , (1)

where {X,Y } is a local orthonormal frame. Almost-Riemannian structures (ARSs for short) gen-
eralize Riemannian ones by allowing X and Y to be collinear at some points. In this case the
corresponding Riemannian metric has singularities, but under generic conditions the distance is
well-defined. For instance, if the two generators satisfy the Hörmander condition1 (see for instance
[6, 10, 25, 30]), system (1) is completely controllable and the minimum-time function still defines
a continuous distance on the surface.

Let us denote by ∆(q) the linear span of the two vector fields of a local orthonormal frame at a
point q. Where ∆(q) is 2-dimensional, the corresponding metric is Riemannian. Where ∆(q) is 1-
dimensional, the corresponding Riemannian metric is not well defined, but thanks to the Hörmander
condition one can still define the Carnot-Caratheodory distance between two points, which happens
to be finite and continuous. Generically, the singular set Z = {q ∈ M | dim(∆(q)) = 1} is
a 1-dimensional embedded submanifold and there are three types of points: Riemannian points,

1The Hörmander condition for a family F ⊂ Vec(M) of vector fields states that for every q ∈ M LieqF = TqM .

1



Grushin points where ∆(q) is 1-dimensional and dim(∆(q) + [∆,∆](q)) = 2 and tangency points
where dim(∆(q) + [∆,∆](q)) = 1 and the missing direction is obtained with one more Lie bracket.
Generically, the following properties are satisfied: at Grushin points ∆(q) is transversal to Z, at
tangency points ∆(q) is tangent to Z and tangency points are isolated.

Almost-Riemannian structures on surfaces were introduced in the context of hypoelliptic oper-
ators [22, 23]. They appeared in problems of population transfer in quantum systems [17, 15, 16]
and they have applications to orbital transfer in space mechanics [12, 11].

The presence of a singular set enriches almost-Riemannian structures with several novelties
with respect to the Riemannian case. The aim of this paper is to present and discuss some of these
aspects, mainly from a geometric point of view.

For instance, as it happens in sub-Riemannian geoemetry, spheres centered at points of the
singular set are never smooth and the asymptotic of the Carnot–Caratheodory distance is highly
non-isotropic, see Section 4.2. Moreover, cut loci accumulate at singular points, even in a non-
smooth way, see [13, 18]. From the local point of view, the relations between curvature and conju-
gate points change, as the presence of a singular set permits the conjugate locus to be nonempty
even if the Gaussian curvature is negative, where it is defined. From the global point of view, the
relations between curvature and topology of the surface change as well. Indeed, Gauss–Bonnet-type
formulas for ARSs were obtained [3, 21, 8], where the role of the topology of the surface is instead
played by the topology of the components in which the singular set split the surface and by the
contributions at tangency points, see Section 5.1. As a consequence, there exist ARSs on surfaces
not necessarily parallelizable for which the integral of the curvature (suitably defined) vanishes,
when in the Riemannian case the total curvature can vanish only on the torus. Also, the location
of the singular set and of tangency points plays a fundamental role when studying the Lipschitz
equivalence class of the Carnot–Caratheodory, see [19]. In particular, if in the Riemannian case
all distances on the same surface are Lipschitz equivalent, in the almost-Riemannian case this is
no longer true and the Lipschitz classification is finer than the differential one. Other interest-
ing phenomena, not considered here, concerning the heat and the Schrödinger equation with the
Laplace–Beltrami operator on an almost-Riemannian surfaces were studied in [20]. In that paper
it was proven that the singular set acts as a barrier for the heat flow and for a quantum particle,
even if geodesics can pass through the singular set without singularities.

The structure of the paper is the following. In Section 2 we recall the precise definition of almost-
Riemannian structure on a surface and fix some notations. In Section 3 we provide examples: the
Grushin plane, for which we compute the optimal synthesis, and an example on the 2-sphere. Sec-
tion 4 deals with local results. First in Section 4.1 we study local orthonormal frames and state a
result that classifies the types of points. Then, in Section 4.2 we focus on local properties around
tangency points such as the asymptotic of the distance as well as the cut and conjugate locus.
Section 4.3 discusses functional invariants, i.e., functions that allow to recognize locally isometric
structures. In Section 5 we address global problems. First we present in Section 5.1 several gener-
alizations of the Gauss-Bonnet formula in the almost-Riemannian context. (For generalizations of
Gauss–Bonnet formula in related contexts, see also [5, 27, 28].) In Section 5.2 a characterization of
ARSs using the topology of the vector bundle defining the structure is stated. Finally, in Section 5.3
we analyse almost-Riemannian surfaces from a metric point of view presenting a classification result
with respect to Lipschitz equivalence. We conclude in Section 6 by some open questions.
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2 Basic definitions and notations

Let M be a smooth connected surface without boundary and denote by Vec(M) the module of
smooth vector fields on M . Throughout the paper, unless specified, objects are smooth, i.e., of
class C∞.

Definition 1 An almost-Riemannian structure (ARS for short) on a surfaceM is a triple (E, f, 〈·, ·〉),
where (i) E is a Euclidean bundle of rank two over M (i.e. a vector bundle whose fibre is equipped
with a smoothly-varying scalar product 〈·, ·〉q); (ii) f : E → TM is a morphism of vector bundles
such that f(Eq) ⊆ TqM ; (iii) for every q ∈M Lieq∆ = TqM , where

∆ = {f ◦ σ | σ section of E}.

ARSs on surfaces can be seen as a first generalization of Riemannian structures towards sub-
Riemannian ones. Indeed, recall that a (constant rank) sub-Riemannian structure on a manifold
N is given by (D, g), where D ⊂ TN is a sub-bundle of rank k < dimN such that LieqD = TqN
for every q ∈ N and g is a Riemannian metric on D. When dimN = 2, the only possibility for a
sub-bundle to be Lie bracket generating is that D = TN , i.e., there do not exist constant rank sub-
Riemannian structures. Hence, in this case one needs to consider rank-varying modules ∆ ⊂ VecN
instead of sub-bundles D ⊂ TN .

Let S = (E, f, 〈·, ·〉) be an ARS on a surface M . The Lie bracket generating assumption in
Definition 1, jointly with the fact that dimM = 2, implies that for each vector field X ∈ ∆ there
exists a unique section σ of E such that X = f ◦ σ.

Denote by ∆(q) the linear subspace {V (q) | V ∈ ∆} = f(Eq) ⊆ TqM . The set

Z = {q ∈M | dim ∆(q) < 2}

is called singular set and coincides with the set of points q ∈M at which f|Eq is not injective, i.e.,
dim∆(q) = 1.

A property (P ) defined for 2-ARSs is said to be generic if for every rank-2 vector bundle E over
M , (P ) holds for every f in an open and dense subset of the set of morphisms of vector bundles
from E to TM inducing the identity on M , endowed with the C∞-Whitney topology.

The Euclidean structure 〈·, ·〉 on E induces a symmetric positive definite bilinear form G(·, ·)
on the submodule ∆ as G(V,W ) = 〈σV , σW 〉, where σV , σW are the unique sections such that
V = f ◦ σV ,W = f ◦ σW . At points q where f|Eq is an isomorphism G acts as a tensor, i.e.,
G(V,W )|q depends only on V (q),W (q). This is no longer true at points belonging to Z, which is
generically a smooth embedded submanifold of dimension 1. By definition, an ARS is Riemannian
if and only if f is an isomorphism of vector bundles or, equivalently, the singular set is empty.

If (σ1, σ2) is an orthonormal frame for 〈·, ·〉 on an open subset U of M , an orthonormal frame
for S on U is given by (f ◦ σ1, f ◦ σ2).

For every q ∈ M and every v ∈ ∆(q) define Gq(v) = inf{〈u, u〉q | u ∈ Eq, f(u) = v}. If q /∈ Z,
then Gq(v) = G(V, V )|q, for any vector field V such that V (q) = v. If q ∈ Z then we have the
inequality

G(V, V )|q ≥ Gq(V (q)).

An absolutely continuous curve γ : [0, T ] → M is admissible for S if there exists a measurable
essentially bounded function [0, T ] ∋ t 7→ u(t) ∈ Eγ(t) such that γ̇(t) = f(u(t)) for almost every
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t ∈ [0, T ]. Given an admissible curve γ : [0, T ] →M , the length of γ is

ℓ(γ) =

ˆ T

0

√

Gγ(t)(γ̇(t)) dt.

The Carnot–Caratheodory distance (or almost-Riemannian distance) on M associated with S is
defined as

d(q0, q1) = inf{ℓ(γ) | γ(0) = q0, γ(T ) = q1, γ admissible}.

The finiteness and the continuity of d(·, ·) with respect to the topology of M are guaranteed by
the Lie bracket generating assumption (see [9, Theorem 5.2]). The Carnot–Caratheodory distance
endows M with the structure of metric space compatible with the topology of M as differential
manifold.

Locally, the problem of finding a curve realizing the distance between two fixed points q0, q1 ∈M
is naturally formulated as the distributional optimal control problem

q̇ = u1F1(q) + u2F2(q) , ui ∈ R ,

ˆ T

0

√

u21(t) + u22(t) dt→ min, q(0) = q0, q(T ) = q1,

where F1, F2 is a local orthonormal frame for S.
A geodesic for S is an admissible curve γ : [0, T ] → M , such that Gγ(t)(γ̇(t)) is constant and

for every sufficiently small interval [t1, t2] ⊂ [0, T ], γ|[t1,t2] is a minimizer of ℓ. A geodesic for which
Gγ(t)(γ̇(t)) is (constantly) equal to one is said to be parameterized by arclength.

Although the metric tensor is singular at points of Z, geodesics are well-defined and smooth.
This can be proved by using classical methods of optimal control theory. The Pontryagin Maximum
Principle [29] provides a direct method to find geodesics for an ARS, as the Hörmander condition
ensures the absence of abnormal extremals [3, Proposition 1]. Indeed, it implies that an admissible
curve parameterized by arclength is a geodesic if and only if it is the projection on M of a solution
of the Hamiltonian system corresponding to the Hamiltonian

H(q, p) =
1

2
((p · F1(q))

2 + (p · F2(q))
2), q ∈ U, p ∈ T ∗

q U. (2)

lying on the level set H = 1/2, where F1, F2 is a local orthonormal frame for the structure on an
open set U . Notice that H is well defined on the whole T ∗M , since formula (2) does not depend
on the choice of the orthonormal frame. When looking for a geodesic γ realizing the distance
from a submanifold N (possibly of dimension zero), one should add the transversality condition
p(0) ⊥ Tγ(0)N .

The cut locus CutN from N is the set of points p for which there exists a geodesic realizing
the distance between N and p that loses optimality after p. It is well known (see for instance [1]
for a proof in the three-dimensional contact case) that, when there are no abnormal extremals, if
p ∈ CutN then one of the following two possibilities happen: (i) p is reached optimally by more
than one geodesic; (ii) p belongs to the first conjugate locus from N defined as follows. To simplify
the notation, assume that all geodesics are defined on [0,∞[. Define

C0 = {λ = (q, p) ∈ T ∗M | q ∈ N, H(q, p) = 1/2, p ⊥ TqN}
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and

exp : C0 × [0,∞[ → M

(λ, t) 7→ π(et
~Hλ)

where π is the canonical projection (q, p) → q and ~H is the Hamiltonian vector field corresponding
to H. The first conjugate time for the geodesic exp(λ, ·) is

tconj(λ) = min{t > 0, (λ, t) is a critical point of exp}.

and the first conjugate locus from N is {exp(λ, tconj(λ)) | λ ∈ C0}.

3 Examples

3.1 The Grushin plane

To have a better understanding of the topic, let us study the simplest case of genuinely almost-
Riemannian surface.

Consider the ARS on R2 where E = R2 × R2, f((x, y), (a, b)) = ((x, y), (a, xb)), and 〈·, ·〉 is
the canonical Euclidean structure on R2. In this case a global orthonormal frame is given by
F1(x, y) = ∂x, F2(x, y) = x∂y and the singular set is indeed nonempty, being equal to the y-axis.
This ARS is called Grushin plane, named after V.V. Grushin who studied in [23] analytic properties
of the operator ∂2x + x2∂2y and of its multidimensional generalizations (see also [22]).

The bilinear form G(·, ·) in coordinates (x, y) reads

(

1 0
0 1

x2

)

,

and the Gaussian cuvature is K(x, y) = − 2
x2 . Note that for every point outside the singular set the

curvature is negative and it diverges to −∞ as the point approaches Z.
The Grushin plane provides a very illustrative example as geodesics can be computed explicitly.

Indeed, by the Pontryagin Maximum Principle, geodesics are projection on R2 of solutions of the
Hamiltonian system associated with

H(x, y, px, py) =
1

2
(p2x + x2p2y).

The system is














ẋ = px
ẏ = x2py
ṗx = −xp2y
ṗy = 0

The last equation implies that along a geodesic py(t) ≡ py(0) = a ∈ R. For a = 0, we obtain

x(t) = x(0) + px(0)t, y(t) ≡ 0, px(t) ≡ px(0),
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that is, horizontal half-lines are geodesics. For a 6= 0, the first and the third equation are the
equations for an harmonic oscillator whose solution is

x(t) = x(0) cos(at) +
ẋ(0)

a
sin(at) (3)

px(t) = −ax(0) sin(at) + ẋ(0) cos(at).

Using the normalization H = 1/2, the initial covector (px(0), a) satisfies

H(x(0), y(0), px(0), py(0)) =
1

2
(p2x(0) + x2(0)a2) =

1

2
,

whence
ẋ(0) = px(0) = ±

√

1− x(0)2a2.

Integrating the equation for y(·) we get

y(t) = y(0) +
x(0)ẋ(0)

2a
+
a2x(0)2 + ẋ(0)2

2a
t+

+
a2x(0)2 − ẋ(0)2

2a
sin(2at)− x(0)ẋ(0)

2a
cos(2at). (4)

Taking (0, 0) as starting point, the normalization condition H = 1/2 implies px(0) = 1 or
px(0) = −1. When px(0) = 1, respectively px(0) = −1, the geodesic enters the region {(x, y) | x >
0}, respectively {(x, y) | x < 0}. Hence, geodesics starting at (0, 0) have the form (x+(t, a), y(t, a))
or (x−(t, a), y(t, a)), where

x±(t, a) = ±1

a
sin(at), y(t, a) =

1

2a
t− 1

4a2
sin(2at) a 6= 0, (5)

x±(t, 0) = ±t, y(t, 0) = 0, a = 0. (6)

Geodesics with a > 0, respectively a < 0, are contained in the half-plane {(x, y) | y > 0}, respec-
tively {(x, y) | y < 0}. In Figure 1a geodesics for some values of a are portrayed, while Figure 1b
illustrates the set of points reached in time t = 1. Notice that this set is non-smooth. Also, the
sphere2 centered at (0, 0) of radius r = 1 is non-smooth. In contrast with what would happen
in Riemannian geometry, this is the case for every positive radius, as it happens in constant-rank
sub-Riemannian geometry. However, this is a consequence of the fact that the initial condition
belongs to Z.

Let us compute the cut locus from (0, 0). The geodesics with a = 0 never lose optimality.
Due to the symmetries of the problem, it is easy to see that the two geodesics (x+(t, a), y(t, a)),
(x−(t, a), y(t, a)) are optimal until they intersect at time t = π/|a|. As a consequence the cut locus
from the origin is the set Cut(0,0) = {(0, α) | α ∈ R\{0}}. Note that Cut(0,0) accumulates at (0, 0).
This is due to the fact that (0, 0) ∈ Z and represents another difference with the Riemannian case,
where Cutp is always separated from p.

2The sphere centered at (x0, y0) of radius r is defined as the boundary of the set {(x, y) | d((x, y), (x0, y0)) < r},
where d is the Carnot–Caratheodory distance. In general, for ARSs this set contains {(x, y) | d((x, y), (x0, y0)) = r}
as a proper subset.
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Figure 1: Analysis of the Grushin plane at (0, 0). Figure a shows some geodesics starting at (0, 0)
corresponding to a = ±1,±2,±3. Figure b portraits the set of points whose distance from (0, 0) is
equal to 1

To compute the conjugate locus from the origin, we find critical points of the map exp defined
in Section 2. Using (5) one can check that, for a 6= 0, the first conjugate time on a geodesic
(x±(t, a), y(t, a)) coincides with the first positive root of the equation

at cos(at)− sin(at) = 0.

Therefore the conjugate locus from (0, 0) is the union of two parabolas

{

(x, y) | |y| = x2

2

(

1

cos τ sin τ
− 1

τ

)}

\ {(0, 0)},

where τ is the first positive number such that tan τ = τ . Note that since (0, 0) ∈ Z, the conjugate
locus accumulates at (0, 0). In particular, even if the curvature is negative for every point outside
Z the conjugate locus from (0, 0) is non-empty. However, every geodesic reaches its conjugate time
after crossing the singular set, see Figure 3a.

One may infer that the existence of conjugate points depends on (0, 0) belonging to the singular
set. However, this is not the case. Indeed, let us consider (−1, 0) as starting point. Let us
parameterize the initial covector as px(0) = ±

√
1− a2, py(0) = a. When a = 0 the solutions of the

Hamiltonian system are x±(t, 0) = −1 ± t, y(t, 0) ≡ 0. When a 6= 0, using (3), (4), the solutions
are

x±(t, a) =
−a cos(at)±

√
1− a2 sin(at)

a
,

y±(t, a) = ±
√
1− a2

a
(cos(at)2 − 1) +

2at− sin(2at) + 2a2 sin(2at)

4a2
.

For a 6= 0, geodesics starting at (−1, 0) are curves of the form (x+, y+), (x+,−y+) (when px(0) =√
1− a2) and of the form (x−, y−), (x−,−y−) (when px(0) = −

√
1− a2). As one expects, since the

metric is Riemannian at (−1, 0), for r ≤ 1 the sphere centered at (−1, 0) of radius r is smooth.
This is no longer true for r > d((−1, 0), (0, 0)) = 1, see Figure 2.

To compute the cut locus from (−1, 0), note first that the horizontal geodesics (x±(t, 0), 0)
never lose optimality. On the other hand, when a 6= 0, one can check that the first time at which
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Figure 2: The set of points {(x, y) | d((x, y), (−1, 0)) = r}, for r = 1, 10.
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Figure 3: Geodesics and upper part of first conjugate locus from a point in Z (Figure a) and from
a point outside Z (Figure b)

a geodesic (x+(t, a), y+(t, a)) intersects another geodesic, namely (x−(t, a), y−(t, a)), is t = π/|a|.
Similarly, the first intersection of (x+(t, a),−y+(t, a)) happens for t = π/|a| with the geodesic
(x−(t, a),−y−(t, a)). Hence, the cut locus from (−1, 0) is the union of two half-lines

Cut(−1,0) = {(1, α) | α ∈ (−∞,−π/2) ∪ (π/2,+∞)}.

As concerns the conjugate locus, computing critical points of exp it is easy to show that for
each a 6= 0 every geodesic has a positive conjugate time. Hence, even if the curvature is negative
and (−1, 0) /∈ Z, there exist conjugate points to (−1, 0), see Figure 3b. Notice that each geodesic
reaches the conjugate point after crossing at least one time the singular set.

3.2 An example on the 2-sphere

Consider another example on a compact surface. Let M = S2 ⊂ R3. Then every pair of vector
fields on S2 are linearly dependent on a nonempty set. Hence, if one wants to study a metric
structure defined globally by a pair of vector fields on the 2-sphere, then one needs to consider an
almost-Riemannian structure.

Metric structures defined globally by a pair of vector fields on S2 arise naturally in the context
of quantum control (see [17, 15]). Indeed, consider the ARS on S2 where E is the trivial bundle
of rank two over S2 and the image under f of a global orthonormal frame for 〈·, ·〉 on E is the
pair X(x, y, z) = (y,−x, 0), Y (x, y, z) = (0, z,−y). Then the two generators are linearly dependent
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Figure 4: Almost-Riemannian structure on the 2-sphere

on the intersection of the sphere with the plane {(x, y, z) | y = 0} (see Figure 4). In this model,
the sphere represents a suitable state space reduction of a three-level quantum system and the
orthonormal generatorsX and Y are the infinitesimal rotations along two orthogonal axes, modeling
the action on the system of two lasers in the rotating wave approximation.

Note that, as for the Grushin plane, the distribution is transversal to the singular set at each
point. Indeed, this ARS is the compact correspondent to the Grushin plane.

4 Local results

4.1 Local representations

The first important work studying general properties of ARSs is [3] where the authors provide the
characterization of generic ARSs by means of local representations.

Definition 2 A local representation of an ARS S at a point q ∈M is a pair of vector fields (X,Y )
on R2 such that there exist: (i) a neighborhood U of q in M , a neighborhood V of (0, 0) in R2 and
a diffeomorphism ϕ : U → V such that ϕ(q) = (0, 0); (ii) a local orthonormal frame (F1, F2) of S
around q, such that ϕ∗F1 = X, ϕ∗F2 = Y , where ϕ∗ denotes the push-forward.

Under generic assumptions, it turns out that one can always construct a local representation (X,Y )
where the first vector field is rectified and the second one has a simple form. The main assumption
to obtain such result is the following. Set ∆1 = ∆ and ∆k+1 = ∆k +[∆,∆k], i.e., ∆k is the module
spanned by Lie brackets of length less than k between elements in ∆. We say that S satisfies
condition (H0) if the following properties hold:

(H0) (i) Z is an embedded one-dimensional submanifold of M ;

(ii) the points q ∈M where ∆2(q) is one-dimensional are isolated;

(iii) ∆3(q) = TqM for every q ∈M .

A simple transversality argument allows to show that property (H0) is generic for 2-ARSs.
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Remark 1 Throughout the paper, unless specified, we always deal with ARSs satisfying (H0).

Theorem 1 ([3]) Given an ARS S on M , for every point q ∈M there exist a local representation
(X,Y ) of S at q such that (X,Y ) has one of the forms

(F1) X(x, y) = (1, 0), Y (x, y) = (0, eφ(x,y)),

(F2) X(x, y) = (1, 0), Y (x, y) = (0, xeφ(x,y)),

(F3) X(x, y) = (1, 0), Y (x, y) = (0, (y − x2ψ(x))eξ(x,y)),

where φ, ξ and ψ are smooth real-valued functions such that φ(0, y) = 0 and ψ(0) 6= 0.

Thanks to Theorem 1, for a point q ∈ M there are three possibilities. First, if ∆(q) = TqM
then q is said to be a Riemannian point and S is locally described by (F1). Second, if ∆(q) is
one-dimensional and ∆2(q) = TqM then we call q a Grushin point and the local description (F2)
applies. At Grushin points ∆(q) is transversal to Z and the Lie bracket between the two elements
of a local orthonormal frame is sufficient to span the tangent plane TqM . Third, if ∆(q) = ∆2(q)
has dimension one and ∆3(q) = TqM then we say that q is a tangency point and S can be described
near q by (F3). At tangency points the subspace ∆(q) is tangent to Z and the missing direction is
obtained with a Lie bracket of length two between the two elements of a local orthonormal frame.
We also set

T = {q ∈ Z | q tangency point of S}.
Note that condition (ii) in assumption (H0) ensures that tangency points are isolated, i.e., T is a
discrete set.

The idea behind the proof of Theorem 1 is that, since ∆(q) is at least one-dimensional, given
a local orthonormal frame for S, one vector field can always be rectified. Then, to deduce the
form of the other vector field one needs to construct a suitable coordinate system. To do this,
the authors provide a procedure that allows to build a local representation starting from a smooth
parameterized curve c(·) passing through the base point q and transversal to the distribution at
each point. The transversality of c(·) to the distribution implies that the Carnot–Caratheodory
distance from the support of c(·) is smooth on a neighborhood of q (see [3, Lemma 1]). Given a
point p near q, the first coordinate of p is, by definition, the distance between p and the chosen
curve, with a suitable choice of sign. The second coordinate of p is the parameter corresponding to
the point (on the chosen curve) that realizes the distance between p and the curve (see Figure 5).
Using the inverse of the diffeomorphism defining this coordinate system, one can build a vector
field belonging to ∆ of norm one and then complete it to a local orthonormal frame. The local
orthonormal frame (X,Y ) obtained through this procedure has the form X = (1, 0), Y = f(x, y)Y ,
where f is a smooth function.

4.2 Local analysis at tangency points

ARSs are characterized by the presence of a singular set, which includes Grushin and tangency
points. These two types of points are essentially different from each other.

At Grushin points, the local situation is described by the Grushin plane (see Section 3) which
is the nilpotent approximation3 of any ARS at a Grushin point. The fact that the distribution

3The nilpotent approximation of a sub-Riemannian structure at a point is the analogue of the tangent space of a
manifold. For the precise definition and analysis of the subject see for instance [6, 10, 30].
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c(·): curve transversal to the distribution

sign = 1

(0, α) (s, α)

(−s′, α′) (0, α′)

c(α)

q = c(0)

c(α′)

s′
s

γ+
α

(s)

sign = 1sign = −1

γ
−

α
′
(s′)

q = (0, 0)

sign = −1

Figure 5: The construction of coordinates starting from a parameterized curve c :]− ε, ε[→ M . We
denote by γ±α the geodesic starting at c(α), parameterized by arclength, entering the region where
sign = ±1 and such that d(γ±α (s), c(]− ε, ε[)) = s. As the distribution is transversal to c(·) at each
point, the distance from c(]− ε, ε[) is smooth.

is transversal to the singular set in a neighborhood of such points implies that the behaviour of
the almost-Riemannian distance from Z is similar on the two sides of Z, as we point out in the
discussion following Theorem 3 (see Section 5.1.1).

At tangency points, the situation is more complicated due to the fact that the asymptotic of
the distance from the singular set is different from the two sides of the singular set. To see this,
let us consider an example. Take the ARS on R2 having X(x, y) = (1, 0), Y (x, y) = (0, y − x2)
as a global orthonormal frame. In this case, the singular set is the parabola {(x, y) | y − x2 = 0}
(see Figure 6) and (0, 0) is a tangency point. Define Mε as the set of points p ∈ R2 such that
d(p,Z) > ε, where d is the almost-Riemannian distance. Then Mε is split in two connected
components M>

ε = Mε ∩ {(x, y) | y − x2 > 0} and M<
ε = Mε ∩ {(x, y) | y − x2 < 0} contained on

the two different sides of Z. It turns out that for small values of ε both parts of the boundary of
Mε are non-smooth in a neighborhood of (0, 0) but have a corner. Also, the order at which they
approach Z as ε goes to zero is different. Indeed, taking another distance d̄ on R2 associated with
any Riemannian structure4, one can check that d̄(M>

ε ,Z) = O(ε2), whereas d̄(M<
ε ,Z) = O(ε3).

The asymmetric behaviour of the almost-Riemannian distance distinguishes tangency points
from Grushin points and has various consequences. It affects the shape of the cut locus from the
tangency point, as well as the shape of the cut locus from Z near the tangency point. Moreover,
together with the asymptotic of the Gaussian curvature, it is to be taken account of when proposing
a notion of integrability with respect to an ARS (see Section 5.1.2). Let us analyse singular loci
around tangency points.

Consider an ARS in a neighborhood of a tangency point. Thanks to Theorem 1, this is equivalent
to taking the ARS on R2 whose orthonormal frame is

X(x, y) = (1, 0), Y (x, y) = (0, (y − x2ψ(x))eξ(x,y)), (7)

where ψ, ξ are smooth functions depending on the structure and ψ(0) 6= 0. It is easy to see that

4For example choose d̄ as the Euclidean distance on R2.
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Figure 6: The singular set (thick line) and the boundary of Mε (bold line) in a neighborhood of a
tangency point, for the structure on R2 whose orthonormal frame is (1, 0), (0, y − x2) and ε = 0.07

the nilpotent approximation of (7) at (0, 0) is the ARS defined by the orthonormal frame

X̂(x, y) = (1, 0), Ŷ (x, y) = (0,−γx2), (8)

where γ = ψ(0)eξ(0,0). The singular set of this structure is the y-axis and at each singular point
dim ∆̂(0, y) = 1. Therefore, this structure does not satisfy condition (ii) in (H0). The optimal
synthesis for this ARS was computed explicitly in [2, 14] in terms of Jacobi elliptic functions. Even
though such synthesis does not reflect qualitative properties of the one for the generic case (7), it
can be used to compute the jet of the exponential map for the ARS (7). The development at (0, 0)
of the orthonormal frame in (7) truncated at order zero5 is

X̃ =
∂

∂x
, Ỹ = γ(y − x2 − ε′x3)

∂

∂y
, (9)

where ε′ = ψ′(0) + ψ(0)ξx(0, 0). The following proposition computes the exponential map at the
origin for the ARS defined in (9). It happens that higher order terms in the expansion of the
elements of the orthonormal frame in (7) do not affect the estimation of the exponential map and,
consequently, the order zero is sufficient to describe the cut and conjugate loci from the tangency
point, at least qualitatively.

Proposition 1 ([13]) Consider the ARS on R2 defined by the orthonormal frame given in (9).
The solution of the Hamiltonian system associated with

H(x, y, px, py) =
1

2
(p2x + γ2(y − x2 − ε′x3)2p2y)

with initial condition (x, y, px, py)|t=0 = (0, 0,±1, a) with |a| ∼ +∞ can be expanded as

x(t, η) = η x0(t/η) + η2x1(t/η) + o(η2),

y(t, η) = η3 y0(t/η) + η4y1(t/η) + o(η4),

where η = 1√
|a|
, (x0, y0, p0x, p

0
y) is the extremal of the nilpotent approximation6 with initial condition

5The coordinate functions (x, y) have weights (1, 3), see [10].
6that is, (x0, y0, p0x, p

0
y) is a solution of the Hamiltonian system associated with H0 = 1/2(p2x + x4p2y), see (8)
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(x0, y0, p0x, p
0
y)|t=0 = (0, 0,±1, sign(a)), and















ẋ1 = p1x,
ẏ1 = γ2(p1y(x

0)4 + 4p0y(x
0)3x1 − 2p0y((x

0)2y0 − ε′(x0)5)),

ṗ1x = −γ2(4p0yp1y(x0)3 + 6(p0y)
2(x0)2x1 − (p0y)

2(2x0y0 − 5ε′(x0)4))

ṗ1y = γ2p0y
2
x0

2
,

with initial condition (x1, y1, p1x, p
1
y)|t=0 = (0, 0, 0, 0).

Proposition 1 was used to estimate the conjugate locus from (0, 0) for the ARS on R2 defined
by the orthonormal frame (7), see [13, Proposition 5]. There exists a constant α 6= 0 such that the
conjugate locus from (0, 0) accumulates at (0, 0) as the set

{(x, y) | y = αx3} ∪ {(x, y) | y = −αx3} \ {(0, 0)}.
The shape of the cut locus from a tangency point (see Figure 7) is described by the following

result.

Proposition 2 ([13]) Let S be an ARS on M and q ∈ M be a tangency point such that there
exists a local representation of the type (F3) for S at q with the property

ψ′(0) + ψ(0)∂xξ(0, 0) 6= 0.

Then the cut locus from the tangency point accumulates at q as an asymmetric cusp whose branches
are separated locally by Z. In the coordinate system where the chosen local representation is (F3),
the cut locus accumulates as the set

{(x, y) | y > 0, y2 − α1x
3 = 0} ∪ {(x, y) | y < 0, y2 − α2x

3 = 0},
with αi = cie

2ξ(0,0)/(ψ′(0) +ψ(0)∂xξ(0, 0))
3, the constants ci being nonzero and independent on the

structure.

Note that both the conjugate locus andCut(0,0) accumulates at (0, 0) with tangent direction parallel
to the distribution. This is no longer true for CutZ in a neighborhood of a tangency point. A
description of such locus is given by the following theorem, see also Figure 7.

Theorem 2 ([18]) Let S be an ARS on M and q ∈ M be a tangency point such that there exists
a local representation of the type (F3) for S at q with the property

ε′ = ψ′(0) + ψ(0)∂xξ(0, 0) 6= 0.

Then the cut locus from the singular set Z accumulates at q as the union of two curves locally
separated by Z. One of them is contained in the set {y > x2ψ(x)}, takes the form

{(−1/2ψ′(0)t + o(t), t+ o(t)) | t > 0},
and accumulates at q transversally to the distribution. The other one is contained in the set {y <
x2ψ(x)} and takes the form

{(ε′ ω t2 + o(t2),−t3 + o(t3)) | t > 0},
where ω 6= 0 is a constant depending on the structure. This part of the cut locus accumulates at q
with tangent direction at q belonging to the distribution.
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the cut locus from the tangency point
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y

the cut locus from the singular set

crests and valleys

singular set

x

y

crests and valleys of the curvature

singular set

crest of the curvature
transversal to the 
distributioncut locus from

the singular set

cut locus from
the tangency point

x

y

curves through the tangency point

Figure 7: The singular set (dotted line), the cut locus from a tangency point (semidashed line), the
cut locus from the singular set (dashed line), and the set of crests and valleys of K (solid lines) for
the ARS with orthonormal frame F1 =

∂
∂x
, F2 = (y−x2−x3) ∂

∂y
. In this case there are three curves

in the set of crests and valleys of the curvature, only one of which is transversal to the distribution.

4.3 Functional invariants

In a recent paper [18] the authors address the problem of finding normal forms for ARSs that
are completely reduced, in the sense that they depends only on the ARS and not on its local
representation. This consists in finding a canonical choice for a local coordinate system and for a
local orthonormal frame, i.e., two vector fields X and Y defined in a neighborhood of the origin on
R2. Once a canonical choice of (X,Y ) is provided, the two components ofX and the two components
of Y are functional invariants of the structure, in the sense that locally isometric structures have
the same components. Moreover, they permits to recognize locally isometric structures: if two
structures have the same invariants in a neighborhood of a point, then they are locally isometric.

14



Notice that the problem of finding a set of invariants that determines the structure up to local
isometries is not completely trivial even in the simplest case of Riemannian points. See for instance
the discussion in [4, 26]. Indeed even if one is able to fix canonically a coordinate system, the
Gaussian curvature in that coordinate system is an invariant, but there are non-locally isometric
structures having the same curvature.

A first step in finding normal forms is Theorem 1. However, the local representations cor-
responding to Riemannian and tangency points are not completely reduced. Indeed, there exist
changes of coordinates and rotations of the frame for which an orthonormal basis has the same
expression as in (F1) (respectively (F3)), but with a different function φ (respectively with dif-
ferent functions ψ and ξ). Recall that to build the local representations in Theorem 1 a specific
procedure based on the choice of a smooth parameterized curve transversal to the distribution was
used. If the parameterized curve used in this construction can be canonically built, then one gets
a local representation of the form X = (1, 0), Y = (0, f) which cannot be further reduced. Hence,
f is a functional invariant that completely determines the structure up to local isometries. In [18],
a canonical choice of the parameterized curve at each point is provided and the properties of the
functional invariant f are studied.

For Riemannian points, a canonical parameterized curve transversal to the distribution can be
easily identified, at least at points where the gradient of the Gaussian curvature is non-zero: one
can use the level set of the curvature passing from the point, parameterized by arclength. For
points where the gradient of the curvature vanishes, under additional generic conditions, a smooth
parameterized canonical curve passing through the point can be selected among the crests and
valleys of the curvature, see [18, Sections 4.1.3, 4.1.4].

For Grushin points, a canonical curve transversal to the distribution is the set Z. This curve
has also a natural parameterization and was used in [3] to get the local representation (F2) that,
as a consequence, cannot be further reduced.

To obtain the local expression (F3), the choice of the smooth parameterized curve was arbitrary
and not canonical. The analysis in [18] is aimed at finding a canonical one and, as a consequence,
obtain a functional invariant at a tangency point that completely determines the structure. The
most natural candidate for such a curve is the cut locus from the tangency point. Neverthless, by
Proposition 2 this is not a good choice, as in general the cut locus from the point is not smooth
but has an asymmetric cusp (see Figure 7). Another possible candidate is the cut locus from the
singular set in a neighborhood of the tangency point, but Theorem 2 states that the cut locus from
Z is non-smooth in a neighborhood of a tangency point, see Figure 7. A third possibility is to
look for curves which are crests or valleys of the Gaussian curvature and intersect transversally the
singular set at a tangency point. The main result in [18] consists in the proof of the existence of
such a curve. Moreover, this curve admits a canonical regular parameterization.

An example of a crest of the curvature at a tangency point is shown in Figure 8.

5 Global results

In this section we address global questions for almost-Riemannian surfaces. The general context in
which all the results can be stated is the one of totally oriented structures.

Definition 3 An ARS is said to be oriented if E is oriented as vector bundle. We say that an ARS
is totally oriented if both E and M are oriented. For a totally oriented ARS, M is split into two
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Figure 8: The graph of the Gaussian curvature K = −2(3x2+y)
(y−x2)2

for the almost-Riemannian structure

on R2 having X(x, y) = (1, 0), Y (x, y) = (0, y − x2) as orthonormal frame. The curvature has a
crest passing through the tangency point (0, 0)

open sets M+, M− such that Z = ∂M+ = ∂M−, f : E|M+ → TM+ is an orientation-preserving
isomorphism and f : E|M− → TM− is an orientation reversing-isomorphism.

Remark 2 Throughout this section we deal with totally oriented ARS on compact surfaces (satis-
fying assumption (H0), see Remark 1).

5.1 Gauss-Bonnet formulas

The first global result for almost-Riemannian surfaces is a Gauss–Bonnet-type formula proved in
[3]. Such theorem gives a first sight of how the relation between curvature and topology changes
in the almost-Riemannian context. Indeed, not only the topology of the surface shows up in the
Gauss-Bonnet formula, but also the way the singular set embeds in the surface. Moreover, a central
role is played by the topology of the vector bundle, see Corollary 1.

Other generalizations of the Gauss–Bonnet formula can be found in [5] for contact sub-Riemannian
manifolds and in [27, 28] for pseudo-Riemannian manifolds.

5.1.1 ARSs without tangency points

The Gauss–Bonnet formula for a compact oriented Riemannian surface M states that
ˆ

M

KdA = 2πχ(M), (10)

where K is the Gaussian curvature and dA is the volume form associated with the metric.
The first step to generalize (10) to ARSs is to introduce an analogous of the volume form dA.

To this aim, the idea is to take a non-degenerate volume form ω on E for the Euclidean structure
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and push it forward on M using the morphism f. Since f is not an isomorphism on Z, this does not
give rise to a two form on the whole surface M but only on the set M \ Z. Let dAs = f∗w denote
such a form. Then dAs defines on M+ the same orientation as the one chosen on M , the opposite
one on M−.

By construction, dAs ∈ Ω2(M \Z) and it diverges when approaching the singular set. Also, the
Gaussian curvature diverges when approaching to Z. To overcome these issues and provide a way
of integrating KdAs over M the idea in [3] is to integrate KdAs over the set of points ε-far from
the singular set and then let ε go to zero. More precisely, let

Mε = {q ∈M | d(q,Z) > ε}, (11)

(where d is the almost-Riemannian distance). Then the Gaussian curvature is said to be integrable
with respect to the ARS if the limit

lim
ε→0

ˆ

Mε

KdAs (12)

exists. In this case such limit is denoted by
´

M
KdAs.

It turns out that if there are not tangency points then the limit in (12) exists and can be
calculated in terms of the topology of the ARS.

Theorem 3 ([3]) If there are no tangency points, then

ˆ

M

KdAs = 2π(χ(M+)− χ(M−)). (13)

To explain the assumption of absence of tangency points, let us go through the main ideas in
the proof of (13). By definition,

ˆ

Mε

KdAs =

ˆ

Mε∩M+

KdAs +

ˆ

Mε∩M−

KdAs.

On the sets Mε ∩M± we can apply the classical Gauss–Bonnet formula to get

ˆ

Mε∩M+

KdAs = 2πχ(Mε ∩M+)−
ˆ

∂(Mε∩M+)
kgdσ,

where kg is the geodesic curvature and ∂(M ε ∩M+) carries the orientation induced by M ε ∩M+.
Taking account of orientations, similarly we obtain

ˆ

Mε∩M−

KdAs = −2πχ(Mε ∩M−) +

ˆ

∂(Mε∩M−)
kgdσ.

Hence letting ε go to zero, to show formula (13) it is sufficient to prove that the contribution at
boundaries offset each other, i.e.,

lim
ε→0

(
ˆ

Mε∩M+

kgdσ −
ˆ

Mε∩M−

kgdσ

)

= 0. (14)

This is the key point where the absence of tangency point is used. Indeed, under this assumption,
the set ∂Mε is shown to be smooth and, moreover, the contributions at the boundaries have the
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same order in ε. In next section we see that this symmetry between the two sides of the singular
set is lost in a neighborhood of a tangency point.

Theorem 3 was generalized in [21] to surfaces with boundary. In this case, the authors define
admissible domains as open bounded connected domains U ⊂ M whose boundary is the finite
union of C2-smooth admissible curves and study the convergence of

´

U∩Mε
KdAs as ε goes to zero.

The generalized Gauss–Bonnet formula, proved through the above techniques, takes account of the
boundary contributions and some other terms due to the intersections of ∂U with the singular set.
When the intersection between ∂U and Z is C2-smooth, the formula simplifies to the following one.

Theorem 4 ([21]) If there are no tangency points and U is an admissible domain such that ∂U
is piecewise C2-smooth and ∂U ∩ Z is C2-smooth, then

ˆ

U

KdAs +

ˆ

∂U

kgdσ = 2π(χ(U+)− χ(U−)).

In the previous statement we have

ˆ

U

KdAs = lim
ε→0

ˆ

U∩Mε

KdAs,

ˆ

∂U

KdAs = lim
ε→0

(
ˆ

∂U∩∂U+
ε

kgdAs −
ˆ

∂U∩∂U−

ε

kgdAs

)

,

where U has the orientation induced as a domain of M and ∂U is oriented as boundary of U ;
U±
ε denotes the set U ∩Mε ∩M± and kg denotes the Gaussian curvature and dσ the arclength

parameter7.

5.1.2 ARSs with tangency points

Let us present a further generalization of Theorem 3 allowing the presence of tangency point.
In this case, two main issues are to be considered when studying the convergence (12). First,

around a tangency point the boundary of the domain of integration is not smooth but has two
corners (one on each side of Z, see Figure 6). Second, the Gaussian curvature diverges in a more
complicated way than at Grushin points. Indeed, while at Grushin points K diverges to −∞, at
a tangency point K diverges at +∞ on some directions, and it diverges at −∞ at some other
ones (see Figures 8, 9). Together with the interaction between different orders in the asymptotic
expansion of the almost-Riemannian distance, these remarks possibly explain why the limit (12)
is not shown to converge. Indeed, the compensation between boundary terms (14) appears not to
happen around tangency points. This has been supported by numerical simulations in [8, Section
5.1] for the ARS on R2 having (1, 0), (y − x2) as orthonormal frame. For this example, the limit
(14) appears to diverge near (0, 0) as c/ε, c is a positive constant.

To overcome the problem, a new notion of integrability of the curvature has been provided in
[8]. The idea is to integrate the curvature not on the whole Mε, but on a subset of Mε depending
on two other parameters δ1, δ2. This set is built by taking away from Mε a “rectangular” box for
each tangency point, where δ1, δ2 are the dimensions of the box see Figure 10.

7Each C2-smooth piece of ∂U is an admissible curve parameterized by arclength
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Z

K < 0

K < 0
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K → −∞
K → −∞

K → ∞

Figure 9: Behavior of K for the ARS on R2 whose orthonormal frame is (1, 0), (0, y − x2): the
plane R2 with the singular set (solid line) and the set of points at which K = 0 (dashed line). See
also Figure 8 for the graph of K

∆

γ
−δ2 (δ1)

q

M+

M−

Z

γδ2 (δ1)

w(δ2)

w(−δ2)

γ
−δ2 (−δ1)

γδ2 (−δ1)

Figure 10: Let q be a tangency point. Take any smooth parameterized curve c :]− 1, 1[→ M such
that c(0) = q and ċ(s) /∈ ∆(c(s)). For each s ∈ (−1, 1), denote by γs the geodesic (parameterized
by arclength) such that γs(0) = c(s) and d(γs(t), w(] − 1, 1[) = |t| for each t sufficiently small. For
δ1, δ2 sufficiently small, the rectangle Bq

δ1,δ2
is the subset of M containing the tangency point q and

having as boundary γδ2([−δ1, δ1]) ∪ γ[−δ2,δ2](δ1) ∪ γ−δ2([−δ1, δ1]) ∪ γ[−δ2,δ2](−δ1)

Let Mε,δ1,δ2 = Mε \
⋃

q∈T B
q
δ1,δ2

. Then K is said to be 3-scale integrable with respect to the
ARS if the limit

lim
δ1→0

lim
δ2→0

lim
ε→0

ˆ

Mε,δ1,δ2

KdAs (15)

exists. In this case such limit is denoted by
›

M
KdAs.

Note that when there are no tangency points, the limit defined in (15) clearly coincides with
the one in (12). Besides, the order in which the limits are taken in (15) is important. Indeed, if
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the order is permuted, then the result given in Theorem 5 does not hold.
To obtain a Gauss–Bonnet formula when tangency points are present, we need the notion of

contribution at tangency points.

Definition 4 Let q be a tangency point. Orient Z as the boundary of M+ (see Figure 11). We
define the contribution at q as τq = 1, respectively τq = −1, if the distribution is rotating counter-
clockwise, respectively clockwise, along Z at q, see Figure 11.

∆

Z
M+

M−

M−

Z
M+

τq = −1 τq = 1

q
q

∆

Figure 11: Tangency points with opposite contributions

The following result generalizes Theorem 3 to ARSs with tangency points.

Theorem 5 ([8]) The Gaussian curvature is 3-scale integrable and

“

M

KdAs = 2π



χ(M+)− χ(M−) +
∑

q∈T

τq



 , (16)

where T is the set of tangency points of S.

Notice that the construction of Mε,δ1,δ2 depends on the choice of a manifold transversal to Z
at each tangency point and on its parameterization. A canonical choice of this manifold has been
provided in [18, Theorem 2], implying that Mε,δ1,δ2 can be constructed in a intrinsic way. This is
also suggested by the fact that

›

M
KdAs equals a quantity that is intrinsically associated with the

structure, see formula (16).

Proof of Theorem 5 (sketch). Fix δ1 and δ2 in such a way that the rectangles Bq
δ1,δ2

are pairwise

disjoint and Z ∩ ∂Bq
δ1,δ2

⊂ [−δ1, δ1]× {δ2}, for every q ∈ T . By construction, ∂Bq
δ1,δ2

is admissible

and has finite length for every q ∈ T . Hence we can take Mε \
⋃

q∈T B
q
δ1,δ2

as U in Theorem 4. As
a consequence, we have

lim
ε→0

ˆ

Mε,δ1,δ2

KdAs +
∑

q∈T

ˆ

∂B
q
δ1,δ2

kgdσs = 2π(χ(M+ \
⋃

q∈T

Bq
δ1,δ2

)− χ(M− \
⋃

q∈T

Bq
δ1,δ2

))

= 2π(χ(M+)− χ(M−)). (17)

If we prove that, for a fixed q ∈ T ,

lim
δ1→0

lim
δ2→0

ˆ

∂B
q
δ1,δ2

kgdσs = −2πτq, (18)
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then we directly obtain (16). To deduce (18) consider the local representation (F3) and assume
that {(x, y) | y − x2ψ(x) < 0} ⊂ M+, the proof for the case {(x, y) | y − x2ψ(x) < 0} ⊂M− being
analogous. On one hand, one can check that τq = 1. On the other hand, the geodesic curvature
along [−δ1, δ1] × {δ2} and along [−δ1, δ1] × {−δ2} is zero, the two segments being the support of
geodesics. Hence

ˆ

∂B
q
δ1,δ2

kgdσs =

ˆ

{δ1}×[−δ2,δ2]
kgdσs +

ˆ

{−δ1}×[−δ2,δ2]
kgdσs +

4
∑

j=1

αj

where the last term is the sum of the values of the angles of the box and is equal to −2π. Indeed,
because of the diagonal form of the metric with respect to the chosen coordinates, each angle has
value −π

2 . The first two terms are well defined and tend to zero when δ2 tends to zero. Hence

lim
δ1→0

lim
δ2→0

ˆ

∂B
q
δ1,δ2

kgdσs = −2π = −2πτq.

�

5.2 A topological classification of ARSs

In this section we present a result that provides a relation among the topology of the almost-
Riemannian surface and the Euler number of the vector bundle associated with the structure.

Let us recall the notion of Euler number. Given an oriented vector bundle of rank 2 over
a compact connected oriented surface M , the Euler number of E, denoted by e(E), is the self-
intersection number of M in E, where M is identified with the zero section. To compute e(E),
consider a smooth section σ :M → E transverse to the zero section. Then, by definition,

e(E) =
∑

p|σ(p)=0

i(p, σ),

where i(p, σ) = 1, respectively −1, if dpσ : TpM → Tσ(p)E preserves, respectively reverses, the
orientation. Notice that if we reverse the orientation on M or on E then e(E) changes sign.
Hence, the Euler number of an orientable vector bundle E is defined up to a sign, depending
on the orientations of both E and M . Since reversing the orientation on M also reverses the
orientation of TM , the Euler number of TM is defined unambiguously and is equal to χ(M), the
Euler characteristic of M . We refer the reader to [24] for a more detailed discussion of this subject.

Theorem 6 ([8]) Under the assumptions of Remark 2, there holds

χ(M+)− χ(M−) +
∑

q∈T

τq = e(E). (19)

The strategy to prove (19) is based on the construction of a section σ of E having only isolated
zeros {p1, . . . , pm} and such that

m
∑

i=1

i(pi, σ) = χ(M+)− χ(M−) +
∑

q∈T

τq.
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To this aim, the key point is to construct σ in a tubular neighborhood of Z in such a way that it
vanishes only at tangency points (see [8, Lemma 1]) and at each q ∈ T the relation i(q, σ) = τq
holds (see [8, Lemma 2]). Once this is done, it is sufficient to extend σ in a smooth way to the
whole surface. By a transversality argument, this can be done by introducing only a finite number
of isolated zeros whose index sum can be calculated using Hopf’s Index Formula.

Theorem 6 has several implications. First it classifies the ARS with respect to the associated
vector bundle. Indeed, the Euler number represents the only topological invariant of an oriented
rank-2 vector bundle over a compact oriented surface, i.e., it identifies the vector bundle. In
particular, as a direct consequence we get that an ARS is trivializable, i.e., E is isomorphic to the
trivial bundle, if and only if

χ(M+)− χ(M−) +
∑

q∈T

τq = 0.

This generalizes and provides the converse result of [3, Lemma 5] stating that if tangency point are
absent, i.e., T = ∅, and the structure is trivializable then χ(M+) − χ(M−) = 0. An alternative
proof of the fact that the latter condition is sufficient for the structure to be trivializable can be
found in [7].

Moreover, Theorem 6 allows to rewrite the Gauss–Bonnet formula of Theorem 5 as follows.

Corollary 1 For any totally oriented ARS S on a compact surface M , the Gaussian curvature is
3-scale integrable and

“

M

KdAs = 2πe(E). (20)

Corollary 1 encloses previous Gauss–Bonnet formulas: for Riemannian structures, where f is an
isomorphism and |e(E)| = e(TM) = χ(M) (formula (10)) and for ARSs without tangency points,
where T = ∅ (formula (13)).

When considering Riemannian structures formula (20) says that the total curvature is zero if
and only χ(M) = 0, that is, M is diffeomorphic to the torus. Instead, in the almost-Riemannian
context formula (20) implies that if the total curvature is zero then the vector bundle E is trivial.
As a consequence, there exist ARSs on surfaces of positive genus having zero total curvature, see
for example Section 3.2.

5.3 Lipschitz equivalence of ARSs

This section is devoted to the description of how the presence of the singular set and, in particular,
of tangency points affect the distance associated with the ARS. Namely, we focus our attention on
the problem of Lipschitz equivalence among different almost-Riemannian distances.

A Lipschitz equivalence is a diffeomorphism ϕ : M1 →M2 which is bi-Lipschitz as a map from
the metric space (M1, d1) to (M2, d2), where di is an almost-Riemannian distance on the surface
Mi associated with an ARS (Ei, fi, 〈·, ·〉i) on Mi. Recall that bi-Lipschitz means that there exists a
constant C ≥ 1 such that

1

C
d2(ϕ(q), ϕ(p)) ≤ d1(q, p) ≤ C d2(ϕ(q), ϕ(p)), ∀ q, p ∈M1.

In the Riemannian case, all distances on diffeomorphic compact oriented surfaces are Lipschitz
equivalent. In other words the Lipschitz classification of Riemannian distances on compact oriented
surfaces coincides with the differential one.
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In the almost-Riemannian case the Lipschitz classification is finer. Clearly this is due to the
presence of a singular set and mainly it is due to how the singular set splits the surface together
with the location of tangency points with their contributions.

5.3.1 Graph of a totally oriented ARS

It turns out that all the information needed to identify the Lipschitz equivalence class of an almost-
Riemannian distance can be encoded in a labelled graph that is naturally associated with the
structure.

The vertices of such graph correspond to connected components of M \ Z and the edges corre-
spond to connected components of Z. The edge corresponding to a connected component W of Z
joins the two vertices corresponding to the connected components of M \ Z adjacent to W. Every
vertex v corresponding to a component Mv is labelled with a pair of integers (sign(v), χ(v)), where
sign(v) takes into account of the orientation of Mv (sign(v) = ±1 if Mv ⊂ M±) and χ(v) is the
Euler characteristic of Mv. Every edge e corresponding to a component W ⊂ Z is labelled with the
ordered sequence of signs (modulo cyclic permutations) given by the contributions at the tangency
points belonging to W where the order is fixed by walking along W oriented as the boundary of
M+. In Figure 12 we illustrate the algorythm to build the labelled graph associated with an ARS.
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Figure 12: Algorythm to build the graph

An example of ARS and associated graph is portraited8 in Figure 13. In this case we consider
an ARS on the compact oriented surface of genus 2 where Z is the union of two circles placed as
in Figure 13a and where there is only a tangency point of positive contribution on one of them.
Then the graph (Figure 13b) must have 3 vertices and 2 edges. The label on vertices are easily
computed. As concerns labels on edges there is only a tangency point (with positive contribution)
on a connected component of Z, whence only one edge carries a label (1), while the other edge is
labelled with (0).

8Note that in Figure 13 we represent only the surface, the singular set and the tangency points. Here we are not
interested in the explicit expression of the morphism f nor on the vector bundle E.
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Remark 3 Adding the quantity
∑

v sign(v)χ(v) to the sum of all the entries in the label of edges,
we obtain χ(M+)− χ(M−) +

∑

q∈T τq, which equals e(E), by Theorem 6. Also,
∑

v χ(v) = χ(M).
Hence, once the labelled graph associated with an ARS is given, one recovers directly the vector
bundle and the surface.

Moreover, the labelled graph associated with an ARS depends on the orientation fixed on E.
More precisely, choosing on E the opposite orientation produces the following changes in the labels
of the graph. On each vertex the first entry of the label changes sign. On each edge not only each
entry of the tuple changes sign but also the tuple is reversed in order.9

b

1,−1

(1)

(0)

−1,−2

1, 1

M+

M+
M−

χ = −2
χ = −1χ = 1

τ = 1

τ = 0

a

Figure 13: Example of ARS and associated graph

We say that two labelled graphs associated with two totally oriented ARSs are equivalent if
either they are equal or after possibly changing the orientation on one vector bundle they are equal.
This notion of equivalence is motivated by this straightforward remark: changing the orientation
of the vector bundle does not affect the almost-Riemannian distance. Moreover, when two labelled
graphs are equivalent, by Remark 3 the associated vector bundles are isomorphic and the underlying
surfaces are diffeomorphic.

5.3.2 A classification result

The following result classifies totally oriented ARSs with respect to Lipschitz equivalence.

Theorem 7 ([19]) Two totally oriented almost-Riemannian structures defined on compact sur-
faces are Lipschitz equivalent if and only if they have equivalent graphs.

Theorem 7 implies that the Lipschitz equivalence class of an almost-Riemannian distance on
a surface depends only on how the singular set is embedded in the surface and how the tangency
points with their contribution are located.

In the Riemannian context10, the Lipschitz equivalence class of distances on a given surface
is unique or, equivalently, it does not depend on the bilinear form on the tangent bundle. In a
similar way, by Theorem 7 we deduce that the Lipschitz equivalence between two distances does

9For example if the label of an edge is (−1, 1,−1,−1), changing the orientation on E the new label becomes
(1, 1,−1, 1).

10If the structure is Riemannian, the associated labelled graph consists of a unique vertex and has no edges. The
label on the vertex is (δ, χ(M)), where δ = 1 if f preserves the orientation, −1 otherwise.
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not depend on the bilinear form G defined on ∆ (see Section 2) but only on the submodule ∆
itself. This is highlightened by the fact that the graph itself depends only on ∆. In terms of the
triple (E, f, 〈·, ·〉) this translates to the fact that the labelled graph does not depend on the chosen
Euclidean structure 〈·, ·〉, but only on the morphism f. As a consequence, in general Lipschitz
equivalence does not imply isometry.

The main tool in the proof of Theorem 7 is a local classification of ARS by Lispchitz equivalence.
Indeed, using the Ball-Box Theorem (see [10, Corollary 7.35]) it is not hard to show that in a
neighborhood of a given point two ARSs are Lipschitz equivalent if and only if the point is of the
same type (Riemannian, Grushin, tangency) for both structures. Then, to glue the information
on different neighborhoods one needs the topological classification of surfaces, that is, one uses
the information carried by labels on vertices. To appreciate the role of contributions of tangency
points, recall that in a neighborhood of a tangency point the asymptotic of the almost-Riemannian
distance from Z is different from the two sides of Z, see Section 4.2. The contribution τq carries
the information about which side is the one with the fastest rate of convergence of Mε (see (11))
to Z.

6 Conclusions

In Table 1 we compair Riemannian and almost-Riemannian geometry of surfaces summing up the
main aspects presented in this paper.

Table 1: Comparison between Riemannian and almost−Riemannian geometry

ALMOST−RIEMANNIAN

at each point spheres of small radii are smooth

the cut locus from a point is separeted from the point

RIEMANNIAN

the cut locus from a point in Z accumulates at the point

at points in Z spheres are never smooth

both Riemannian points and points in Z have conjugate locus

Lipschitz equivalence ( differential equivalence

›

M
KdAs = 2πe(E)

trivializable ⇒ torus or Z 6= ∅

X, Y linearly independent

Lipschitz equivalence ≡ differential equivalence

K < 0 then no conjugate points

´

M
KdA = 2πχ(M)

trivializable (∃ a global orthonormal frame) ⇒ torus

X, Y Lie bracket generating

As one can infer from the present analysis, the most interesting points of ARSs are tangency
points. Even though some contributions have been done [13, 18], tangency points are far to be
deeply understood.

An open question arisen in the proof of Theorem 3 is the convergence or the divergence of the
integral of the geodesic curvature on the boundary of a tubular neighborhood of the singular set,
close to a tangency point. To address this issue one needs to understand whether the domain of
integration or the form to be integrated need to be reconsidered.

The analysis of the Laplace–Beltrami operator in presence of tangency points has not been
considered yet although in [20] the authors conjecture some properties, based on the case with only
Grushin points.
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Another interesting problem is whether it is possible to associate with an ARS a canonical linear
connection on E compatible with the Euclidean structure. To this aim one needs to use properties
of the morphism f, as in general the answer is negative. This could be a step forward towards an
intrinsic notion of integration of the Gaussian curvature on the surface, as one could study the
curvature on the vector bundle. Also, focusing on the vector bundle rather than on the (tangent
bundle to the) surface is a starting point towards higher dimensions generalizations.
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[14] B. Bonnard and M. Chyba. Méthodes géométriques et analytiques pour étudier l’application exponen-
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