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Optimal control of a bioreactor for biofuel production
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Abstract

We propose a hybrid model for optimal control of a bioreactor which features a full coupling
between a linear optimization problem and a dynamic one.

1 Introduction

Biofuels provide a concrete answer to the pressing need for renewable energy. The problem of
increasing the efficiency and reducing the cost of biofuel production has been subject of intensive
research [2, 9]. A feasible source to obtain biofuels consists in using ethanol produced by cyanobac-
teria and microalgae [12, 13]. This paper deals with the application of optimal control techniques
to a general bioreactor for biofuel production.

Since the last decades, optimization of bioprocesses has been a line of research connecting opti-
mal control to system biology, see [24] and references therein. Progress in plant genetic engineering
has opened novel opportunities to use plants as bioreactors for safe and cost effective production
of vaccine antigens. A review of methods and applications of plant, tissue and cell culture based
expression strategies and their use as bioreactors for large scale production of pharmaceutically im-
portant proteins can be found in [23]. Exploiting bioreactors was also proved a fruitful method to
deal with the problem of wastewater treatment in environmental engineering [19]. In this context a
dynamic optimization problem arising frequently is the minimization of the time needed to reach a
fixed target configuration for the bioreactor, see [22]. In this case, the trajectory evolves according
to a system of nonlinear ODEs and may satisfy some boundary constraints as well. The right-hand
side of the evolution equations involves not only control functions, i.e. parameters through which
we can modify the dynamics, but also some unknown functions (e.g. biomass growth rate) of the
evolving quantities themselves. Therefore, computing optimal controls through standard techniques
(necessary conditions) is affected by the unknown functions’ behavior. An interesting approach to
deal with this issue using observability techniques was proposed in [4], where an application to
bioreactors is also provided (see also [11]).

Other applications of optimal control techniques have been studied in the field of biological
systems [1]. In the context of medical treatment, chemotherapy was used [16] as a dynamic control
to optimize treatment scheduling in early stage HIV-infected cases. In that paper the authors

∗Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy roberta.ghezzi@sns.it
†Rutgers University, Department of Mathematical Sciences and Center for Computational and Integrative Biology,

Camden, NJ 08102, USA piccoli@camden.rutgers.edu

1

http://arxiv.org/abs/1303.6688v1


use the effect of chemotherapy on viral production to maximize benefits in terms of T cell count
and minimize the systemic cost of the treatement. Time dependent control strategies were also
exploited in models to contain the emergence of drug-resistant strains of tubercolosis [15]. Here
controls are represented by efforts in finding patients in which virus is only latent and in completing
treatment for patients in which virus is already active. The objective function balances the effect
of minimizing the cases of latent and infectious drug-resistant tubercolosis and minimizing the cost
of implementing the control treatments.

In this paper we are concerned with the optimization of a bioprocess for biofuel production.
Namely, we consider a model for the metabolic activity of a microorganism (e.g. E. Coli or Saccha-
romyces Cerevisiae) in a fed-batch culture with different feeding substrates. The optimal control
problem is to maximize the productivity of a certain side metabolite (e.g., ethanol) through different
feeding rates.

A steady-state approach to model cellular metabolism is Flux Balance Analysis (FBA, see [20]).
The main assumption of FBA is that metabolic activity of cells is performed in such a way that
the growth rate of cells is maximized. Since genome-scale stoichiometric models for bacteria such
as E. Coli are available, this translates in a linear program where the objective is cellular growth
rate and constraints are given by metabolic reactions. Optimization is then performed by means
of genetic manipulations on the bacteria (gene deletions and insertions). Other approaches based
on flux balance analysis were proposed that take account of transcriptional and regulatory effects
in [7], that couple the steady-state metabolic activity with a dynamic model [17, 18] and that
integrate both aspects [8]. Optimizing ethanol productivity in fed-batch cultures modeled through
Dynamic Flux Balance Analysis [14] consists in using outputs of FBA (cellular growth rate and
metabolite fluxes) to update at each time step the dynamics for evolving extracellular quantities.
Within this framework, control can be performed at two levels: intracellular controls (genetic
modifications), which are implemented by acting on constraints of the FBA, and extracelullar
controls (of dynamic nature), which are implemented by changing feeding rates. Genetic strategies
were deeply investigated in [14] for in silico evolution of a yeast strain in glucose and xylose media
to maximize ethanol productivity with constant feeding rates.

In this paper, we analyze extracellular controls, i.e., feeding rates for glucose and xylose, which
we allow to be time dependent. Namely, we cast the problem of optimizing ethanol for the biore-
actor in the language of optimal control, where concentrations of feeding substrates are modified
by an external agent in order to control ethanol production. Even though we do not consider
genetic manipulations, our model can integrate intracellular controls. Our purpose is to develop
up a general model which shares a full coupling between extracellular dynamics and intracellular
metabolic activity: at each time instant solutions of ODEs feed fluxes to constraint the FBA,
whereas FBA provides cellular growth rate and ethanol uptake ODEs see Figure 1. Since both
the objective function and the constraints in FBA are linear (with respect to fluxes), outputs are
piecewise linear. Dependence of fluxes on metabolite concentrations is modeled through Michaelis–
Menten behavior, i.e., through rational functions. Therefore, FBA outputs appearing in dynamics
are piecewise smooth functions of evolving quantities. The main idea is to implement the coupling
between the intracellular and extracellular level through a hybrid control system where in each
location the outputs of FBA are smooth. One of the advantages of a hybrid formulation is that it
allows to take account of different timescales. One can either assume that information translates
instantaneously from the micro level to the macro one (and viceversa) or one can implement delays,
which are observed in experimental data. This is useful as there are configurations of the extra-
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Figure 1: Bioprocess scheme exhibiting full coupling between metabolic activity and external dy-
namics

cellular environment (such as saturation of glucose or oxygen) which may cause a major change in
the metabolic pathway involved inside the cell with a consequent delay in the variation of outputs
of the FBA.

As a first step toward a unified model, we focus on the analysis of optimal trajectories contained
in a connected component where FBA parameters are smooth. In other words, we study what
happens in each location of the hybrid model. More precisely, the location is characterized by a
control-affine system of the type

ẋ = F0(x, y
x) + u1F1(x) + u2F2(x),

where x is a vector containing substrate concentrations (biomass, glucose, xylose, ethanol), u1, u2
are feed rates of glucose and xylose, yx are parameters coming from FBA, and F0, F1, F2 are
smooth. We consider an optimal control problem in Mayer form where we optimize the total
amount of ethanol at the final time. Since the system is control-affine, the maximization condition
of the Pontryagin Maximum Principle allows to compute the control along an extremal trajectory
as a feedback law, as long as the corresponding switching function (derivative of Hamiltonian with
respect to control) has only isolated zeros. Otherwise, when the trajectory shows a singular arc,
i.e., a time interval where a switching function vanishes identically, the main tool to find controls is
exploiting conditions given by annihilation of higher order derivatives with respect to time. As our
interest is driven by applications, one would rather avoid singular arcs, which represent an obstacle
to efficient and reliable numerical simulations. The main result of the paper describes properties of
extremal trajectories having singular arcs, under the assumption that parameters yx are affine with
respect to substrates’ fluxes and that growth is anaerobic. Notice that, due to specific properties
of the optimal control problem considered here, one cannot expect that optimal singular arcs do
not occur, even generically. Indeed, as the vector fields F1, F2 are actually constant, we cannot use
results on codimension of singular trajectories, such as [6], where the authors deal with control-
affine systems satisfying generic assumptions. We also consider the role of oxygen as a control.
In the case where feeding rates of glucose and xylose are piecewise constant, we characterize the
solution of the adjoint system along singular arcs.

The structure of the paper is the following. In Section 2 we recall the general model of a
bioreactor and formulate the optimal control problem where the cost to be maximized is ethanol
productivity of the bioreactor (i.e., a certain function of the total amount of ethanol produced
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at the final time.) In Section 3 we state and prove the main result concerning optimal singular
trajectories. In Section 4 we discuss the role of oxygen as a control.

2 Problem formulation

Bioreactors are processes where a living microorganism metabolizes some substrates and conse-
quently grows and produces other metabolites. In [14] the authors consider in silico evolution of a
yeast strain, Saccharomyces cerevisiae, which grows in a fed-batch culture with glucose and xylose
and produces ethanol. The dynamic model can be applied to a general bioreactor.

We denote by V the total culture volume, which is assumed to grow linearly with respect to time
with constant rate F . Biomass concentration is denoted by X. The total biomass in the culture
evolves linearly with a growth rate µ. Concentrations of feeding substrates (glucose G and xylose
Z) are characterized by an evolution which takes account of a feeding rate and a compensation
term due to metabolism of the microorganism. Feeding rates for substrates represent the control
we perform on the system and are denoted by u1, u2. The organism metabolizes glucose and xylose
with specific rates (or fluxes) vg, vz . Oxygen concentration O is also involved in the bioprocess and
represent a further control whose role we analyze in Section 4. The produced metabolite we study
is ethanol. Denoting ethanol concentration by E, we assume that the organism produces ethanol
proportionally to the total biomass through a specific rate ve. Therefore, the control system we
analyze is



























V̇ = F
˙V X = µ(G,Z,E,O)V X
˙V G = Fu1 − vg(G,E)V X
˙V Z = Fu2 − vz(G,Z,E)V X
˙V E = ve(G,Z,E,O)V X.

(1)

It is evident from system (1) the parameters µ, vg, vz, ve depend on evolving variables. First of all,
oxygen uptake kinetics follows Michaelis-Menten kinetics

vo(O) = vomax
O

ko +O
,

whereas glucose uptake kinetics has an additional regulatory term to capture growth rate suppres-
sion due to high ethanol concentration, i.e.,

vg(G,E) = vgmax
G

kg +G

1

1 + E/kgie
.

Xylose uptake kinetics has a similar form with another regulatory term to account for inhibited
xylose metabolism in presence of the preferred substrate (glucose),

vz(G,Z,E) = vzmax
Z

kz + Z

1

1 + E/kzie

1

1 +G/kig
.

Parameters vomax, vgmax, vzmax, kg, k
g
ie, kz, k

z
ie, kig are positive and constant. As for µ, ve, the model

is based on the principle that the metabolic activity of the microorganism is performed so that
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biomass growth rate is maximized. This is equivalent to say that µ and ve are outputs of an
optimization problem stated as

µ(G,Z,E,O) = max
v̄∈Rn

n
∑

j=1

wj v̄j (2)

s.t. Sv̄ = 0

v̄g = vg(G,E)

v̄z = vz(G,Z,E)

v̄z = vz(G,Z,E)

v̄o = vo(O)

0 ≤ v̄j ≤ ṽj , j = 1, . . . , n

ve(G,Z,E,O) = argmaxµ(G,Z,E,O). (3)

In (2), v̄ ∈ R
n is the vector of fluxes (among which glucose, xylose, oxygen and ethanol fluxes)

considered in the model; w ∈ [0, 1]n is the vector of weights which determines fluxes producing
biomass; S ∈ M r×n(R) is the stoichiometric matrix which encode the metabolic network inside
the cell (involving r reactions and n metabolites); ṽ is an upper bound associated with the mi-
croorganism, (see [20] for an exhaustive treatment of metabolic networks in systems biology.) For
our purposes, w,S, ṽ are considered as given parameters. They depend on the specific strain of
microorganism used in the bioreactor and are usually determined through experimental data see
for instance supplementary data of [8] for E. Coli or [13] for Saccharomyces Cerevisiae.

Equation (3) is to be read as follows. Let V max denote the set of vectors v̄ satisfying the
constraints above and realizing the maximum, i.e., µ(G,Z,E,O) =

∑

j wj v̄j . Then ve(G,Z,E,O)
is the maximum of v̄e as v̄ varies in V max. We fix the final time tf > 0 and an initial condition
(V0,X0, G0, Z0, O0) and we seek to optimize ethanol productivity along a trajectory of (1), i.e.,

max
(u1,u2)∈U

V (tf )E(tf )
∫ tf
0 (u1(s) + u2(s)) ds

(4)

where the class of admissible controls is

U = {(u1, u2) ∈ L∞([0, tf ])
2 | ui(t) ∈ [0, 1] for almost every t}.

We may assume that the functional (4) does not diverge, as the trivial control strategy where there
is no feed, i.e., (u1(t), u2(t)) ≡ (0, 0), is not optimal.

The problem shares a full coupling between a classical optimal control problem (1), (4), which
describes the dynamics outside the cell, and a linear optimization problem (2), which models the
metabolic activity inside the cell. In other words, at each time instant t, on the one hand, one
needs to solve the LP (2) to obtain µ, ve at time t to plug into (1); on the other hand, dynamics
in (1) must be integrated to in order to get the triple (G(t), Z(t), E(t)) that allows to determine
constraints in (2).

Since in (2) both the objective function and the constraints are linear with respect to v̄, the
outputs µ and ve are piecewise linear with respect to v̄. Therefore µ, ve are piecewise smooth as
functions of (Z,G,E,O). In the sequel we assume that the outputs of (2) are smooth. This amounts
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to say that the system evolves in a domain where µ, ve are smooth as functions of (Z,G,E,O).
Under this assumption, we study optimal trajectories for problem (1), (4).

Let us give a more compact formulation of the optimization problem above. We will deal first
with the case where growth is anaerobic, that is, oxygen concentration O is zero (see Section 4 for
the analysis where oxygen is taken as a control.) Let us rename

x3 = V G, x4 = V Z, x5 = V E, x6 = V X, x7 = V. (5)

It is natural to add two new variables to (1) by setting

xi(t) =

∫ t

0
ui(s)ds, i = 1, 2,

so that the control system (1) reads



















































ẋ1 = u1

ẋ2 = u2

ẋ3 = Fu1 − vg(x3, x5, x7)x6

ẋ4 = Fu2 − vz(x3, x4, x5, x7)x6

ẋ5 = ve(x3, x4, x5, x7)x6

ẋ6 = µ(x3, x4, x5, x7)x6

ẋ7 = F

(6)

where

vg(x3, x5, x7) = vgmax
x3x7

(kgx7 + x3)(x7 + x5/k
g
ie)

(7)

vz(x3, x4, x5, x7) = vzmax
x4x

2
7

(kzx7 + x4)(x7 + x3/kig)(x7 + x5/kzie)
, (8)

and ve(x3, x4, x5, x7), µ(x3, x4, x5, x7) are defined in the obvious way by (2), (3) using (5).
The equation for x7 can be trivially integrated. Indeed, the total volume of the culture plays

the same role as time along the experiment. Here we prefer to keep the state variable x7 in order
the control system to be autonomous.

Setting x = (x1, x2, x3, x4, x5, x6, x7), the optimization in (4) becomes

max
(u1,u2)∈U

ψ(x(tf )), (9)

where ψ(x) = x5

x1+x2
. The latter is smooth on the subset R = {x ∈ R

7 | x1 + x2 > 0}. Every
trajectory starting at a point with x1(0)+x2(0) > 0 satisfies the state constraint x1(t)+x2(t) > 0,
i.e., it belongs to the region R for every t > 0.

The control system (6) is affine with respect to controls and can be written in the form

ẋ = f(x, u), x ∈ R
7
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where u = (u1, u2), f(x, u) = F0(x) + u1F1(x) + u2F2(x) and

F0(x) =





















0
0

−vg(x3, x5, x7)x6
−vz(x3, x4, x5, x7)x6
ve(x3, x4, x5, x7)x6
µ(x3, x4, x5, x7)x6

F





















, F1(x) =





















1
0
F
0
0
0
0





















, F2(x) =





















0
1
0
F
0
0
0





















.

We end this section by stating a result which ensures the existence of optimal solutions to (1),
(9) with suitable initial conditions.

Proposition 1 Assume ve, µ ∈ C∞(R4,R+) and let x0 belong to

D = {x ∈ R
7 | xi ≥ 0, i = 1 . . . 6, x1 + x2 > 0, x7 > 0}. (10)

Then there exist an optimal solution to (6), (9) satisfying the initial constraint x(0) = x0.

Sketch of proof. Under the assumption that µ, ve are smooth, every trajectory of the control
system starting at a point x0 in the set (10), is well-defined for all t > 0 and satisfies xi(t) ≥ 0 for
every t > 0. Indeed, let D0 = {x ∈ R

7 | xi ≥ 0, i = 1 . . . 6, x7 ≥ x07}. Then the dynamics is smooth
and satisfies the sublinear bound

|f(x, u)| ≤ C(1 + |x|), ∀x ∈ D0, (u1, u2) ∈ [0, 1]2,

for a certain constant C > 0. Let T be such that a trajectory starting at x0 is well-defined on
[0, T ]. Then x(t) ∈ D0 for every t ∈ [0, T ]. Indeed, inequalities xi(t) ≥ 0 for i = 1, 2, and
x7(t) ≥ x07 are trivially satisfied. Similarly, since the equation for x6 is linear with respect to x6,
we have x6(t) ≥ 0. By assumption (and thanks to the constraints 0 ≤ v̄j ≤ ṽj in (2)), ethanol flux
ve(x3, x4, x5, x7) is non negative for every t, whence x5(t) ≥ 0. Finally, let t̄ be such that x3(t̄) = 0.
Then ẋ3(t̄) = Fu2(t̄) ≥ 0, hence x3(t) ≥ 0 for t > t̄. In the same way one infers that x4(t) ≥ 0 for
every t. Hence trajectories starting at a point of the set (10) are well-defined for every t > 0 and
x(t) ∈ D0 for all t > 0. Moreover, because x01 + x02 > 0, we have x1(tf ) + x2(tf ) > 0, that is, the
final point of any trajectory belongs to the R on which the cost functional (9) is smooth.

Since the dynamics (6) is control affine, the set of velocities {f(x, u) | u ∈ [0, 1]2} is convex for
every x. Therefore, the existence of an optimal solution is a consequence of classical results (see [3,
Theorem 5.1.1]). �

3 Analysis of extremal trajectories

In this section we study optimal trajectories of (6), (9) starting from a given initial condition
x0 ∈ D. The Hamiltonian associated with the optimal control problem is

H(x, λ, u) = 〈λ, F0(x)〉+ u1 〈λ, F1(x)〉 + u2 〈λ, F2(x)〉 ,

where λ = (λ1, λ2, λ3, λ4, λ5, λ6, λ7) ∈ R
7 denotes the covector.
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Let u∗(t) = (u∗1(t), u
∗
2(t)) be an admissible control such that the corresponding trajectory of

(6) starting at x0, denoted by x(t), is optimal. Applying the Pontryagin Maximum Principle [21],
there exists a solution λ(t) 6= 0 of the adjoint system

λ̇(t) = −
∂H

∂x
(x(t), λ(t), u∗(t)), λ(tf ) = ∇ψ(x(tf )),

which reads


























































λ̇1 = 0

λ̇2 = 0

λ̇3 = x6

(

∂vg
∂x3

λ3 +
∂vz
∂x3

λ4 −
∂ve
∂x3

λ5 −
∂µ
∂x3

λ6

)

λ̇4 = x6

(

∂vz
∂x4

λ4 −
∂ve
∂x4

λ5 −
∂µ
∂x4

λ6

)

λ̇5 = x6

(

∂vg
∂x5

λ3 +
∂vz
∂x5

λ4 −
∂ve
∂x5

λ5 −
∂µ
∂x5

λ6

)

λ̇6 = vgλ3 + vzλ4 − veλ5 − µλ6

λ̇7 = x6

(

∂vg
∂x7

λ3 +
∂vz
∂x7

λ4 −
∂ve
∂x7

λ5 −
∂µ
∂x7

λ6

)

,

(11)

such that, for almost every t ∈ [0, tf ],

H(x(t), λ(t), u∗(t)) = max
0 ≤ ω1 ≤ 1

0 ≤ ω2 ≤ 1

〈λ(t), F0(x(t))〉+ ω1 〈λ(t), F1(x(t))〉+ ω2 〈λ(t), F2(x(t))〉 ,

(see also [3, Theorem 6.1.1]). The transversality condition for the covector at final time is

λ(tf ) =

(

−
x5(tf )

(x1(tf ) + x2(tf ))2
,−

x5(tf )

(x1(tf ) + x2(tf ))2
, 0, 0,

1

x1(tf ) + x2(tf )
, 0, 0

)

,

and, since the Hamiltonian does not depend on x1, x2, we obtain

λ1(t) ≡ λ2(t) ≡ −
x5(tf )

(x1(tf ) + x2(tf ))2
. (12)

Define the switching functions

ϕi(t) = 〈λ(t), Fi(x(t))〉 , i = 1, 2.

Since the Hamiltonian is affine with respect to controls, for every t such that ϕ1(t)ϕ2(t) 6= 0 the

control u∗(t) is uniquely determined by u∗i (t) =
1+signϕi(t)

2 , i = 1, 2.
We say that an extremal x(·) has a singular arc on [a, b] ⊂ [0, tf ], with a < b, if ϕ1|[a,b] ≡ 0

or ϕ2|[a,b] ≡ 0. In general more degenerate singular arcs can occur: for instance, arcs where one
among the switching functions vanishes identically and the other one has non-isolated zeros and
does not vanish identically. In this case, the corresponding component of the control features an
accumulation of switchings. Accumulations of zeros of the switching functions can indeed happen
along an optimal trajectory and they are known as chattering or Fuller’s phenomena (see [10].)
In this paper we assume that chattering phenomena do not occur. Even though such pathological
phenomenon can happen, novel techniques have been recently developed to overcome it, see [5].

When seeking an optimal synthesis, a fundamental step is to reduce the problem to a finite-
dimensional one. For instance, this can be done if, by means of necessary conditions, one deduces
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that every extremal trajectory is a finite concatenation of bang arcs, where the control has a simple
form. In general this is hard to prove, still one can expect that only “a few” extremal trajectories
are “bad”, i.e., they do not satisfy this property. To do so, a first step is the result below, which
describes the covector along badly behaved extremal trajectories for the optimal control problem
(6), (9).

Concerning the presence of optimal singular trajectories for control-affine systems, a genericity
result has been shown in [6]. In that paper, the authors prove that, given a quadratic cost, generi-
cally with respect to the control system there do not exist nontrivial optimal singular trajectories
[6, Corollary 2.9]. Notice that this result does not apply here because system (6) is not generic,
F1, F2 being constant vector fields.

Theorem 1 Assume that µ, ve are affine with respect to (vg, vz), i.e.,

µ = a1vg + a2vz + µ̄

ve = b1vg + b2vz + v̄, (13)

with a1, a2, b1, b2, µ̄, positive constant such that

a1b2 − a2b1 6= 0

(b1 − b2)µ̄ + (a2 − a1)v̄ 6= 0

b1µ̄− a1v̄ 6= 0.

Let x(·) be an optimal trajectory having a singular arc on [a, b] ⊂ [0, tf ] such that the sets of zeros
of ϕ1 and ϕ2 are finite unions of intervals. Then one among ϕ1, ϕ2 does not vanish identically on
[a, b].

If a singular arc of type ϕ1 ≡ 0, ϕ2 6= 0 is optimal, then u∗2 =
1+signϕ2(t)

2 and

• if 〈λ, [F1, [F0, F1]]〉 ≡ 0 then λ4(t) is uniquely determined by x(·) and x(tf ) and λj is constant
for every j 6= 4.

• if 〈λ, [F1, [F0, F1]]〉 has only isolated zeros then u∗1(t) is uniquely determined as a feedback.

Proof. Since there is no chattering, on [a, b] either both switching functions vanish identically or
one is identically zero and the other one has only isolated zeros.

Assume first that ϕ1|[a,b] ≡ 0 and ϕ2|[a,b] ≡ 0. Then

λ1(t) + Fλ3(t) ≡ 0

λ2(t) + Fλ4(t) ≡ 0.

Jointly with (12), we deduce that

λ3(t) ≡ λ4(t) ≡ −
λ1(tf )

F
.

Therefore, λ1(t), λ2(t), λ3(t), λ4(t) are uniquely determined as functions of x(tf ). In the following
we set λ̄1(t) = λ1(tf ), λ̄2(t) = λ1(tf ), λ̄3(t) = −λ1(tf )/F, λ̄4(t) = −λ1(tf )/F .

9



Conditions ϕ1 ≡ 0, ϕ2 ≡ 0 imply jointly with the third and fourth equation in (11) that the pair
(λ5, λ6) must satisfy

(

∂ve
∂x3

∂µ
∂x3

∂ve
∂x4

∂µ
∂x4

)

(

λ5
λ6

)

= −

(

λ1(tf )
F

∂vg
∂x3

+
λ2(tf )

F
∂vz
∂x3

λ2(tf )
F

∂vz
∂x4

)

(14)

System (14) can be seen as a linear system in (λ5(t), λ6(t)) whose coefficient depend only on x(t)
and on x(tf ). When µ, ve are given as in (13), the determinant of (14) is a positive multiple of
a1b2 − a2b1. Hence, by assumption, it never vanishes and (14) admits a unique solution. In other
words, we can express (λ5(t), λ6(t)) as a functions of x(t) and x(tf ). In what follows, we denote by
λ̄5(t), λ̄6(t) the solution of (14). Consider now the system

ϕ̈1 = 〈λ, [F0, [F0, F1]]〉+ u1 〈λ, [F1, [F0, F1]]〉+ u2 〈λ, [F2, [F0, F1]]〉 ≡ 0, (15)

ϕ̈2 = 〈λ, [F0, [F0, F2]]〉+ u1 〈λ, [F1, [F0, F2]]〉+ u2 〈λ, [F2, [F0, F2]]〉 ≡ 0. (16)

Taking λ = (λ̄1, λ̄2, λ̄3, λ̄4, λ̄5, λ̄6, λ7), due to the form of µ, ve a computation shows that

〈λ, [F1, [F0, F1]]〉 ≡ 0, 〈λ, [F2, [F0, F1]]〉 ≡ 0, 〈λ, [F1, [F0, F2]]〉 ≡ 0, 〈λ, [F2, [F0, F2]]〉 ≡ 0.

Hence, in order system (15) to be compatible, one needs

〈λ, [F0, [F0, F1]]〉 ≡ 0, 〈λ, [F0, [F0, F2]]〉 ≡ 0.

Nevertheless, we have

〈λ, [F0, [F0, F2]]〉 =
a2Fk

z
iekigkz v̄zmaxx6x

3
7((b1λ̄4 − b2λ̄3)µ̄ + (a2λ̄3 − a1λ̄4)v̄)

(a2b1 − a1b2)(x5 + kziex7)(x3 + kigx7)(x4 + kzx7)2
.

Hence, since λ̄3 = λ̄4 6= 0 and a1b2 − a2b1 6= 0, (b1 − b2)µ̄+ (a2 − a1)v̄ 6= 0, we get a contradiction.
Therefore, there cannot exist optimal singular arcs where both ϕ1 and ϕ2 vanish identically.

Assume now that ϕ1|[a,b] ≡ 0 and ϕ2(t) has only isolated zeros in [a, b]. In particular,

λ3(t) ≡ −
λ1(tf )

F
> 0,

and u∗2(t) = 1+sign(ϕ2(t))
2 , that is, u∗2 is given as a feedback law. Let λ̄1(t) ≡ λ1(tf ), λ̄3(t) ≡

−λ1(tf )/F . From condition ϕ̇1 ≡ 0, which is equivalent to λ̇3 ≡ 0, we obtain that

kgk
g
ievgmax

λ̄3 − b1λ5 − a1λ6
(x3 + kgx7)2(x5 + kgiex7)

+kziekigvzmaxx4
−λ4 + b2λ5 + a2λ6

(x5 + kziex7)(x3 + kigx7)2(x4 + kzx7)
≡ 0 (17)

Setting

A = kgk
g
ievgmax

λ̄3 − b1λ5 − a1λ6
(x3 + kgx7)2(x5 + kgiex7)

, B = kziekigvzmax
−λ4 + b2λ5 + a2λ6

(x5 + kziex7)(x3 + kigx7)2(x4 + kzx7)
,

equation (17) becomes
A+ x4B ≡ 0.
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Let c(t) = 〈λ, [F1, [F0, F1]]〉 be the coefficient of u1 in condition ϕ̈1 ≡ 0, see (15). A computation
shows that

c(t) = −2F 2x6x
2
7

(

A

x3 + kgx7
+ x4

B

x3 + kigx7

)

. (18)

Since there is no chattering, zeros of c(·) are finite union of intervals. Hence, we distinguish two
cases: first c|[a,b] ≡ 0, second c(·) has only isolated zeros in [a, b]. In the second case condition
ϕ̈1 ≡ 0 allows to determine u∗1(t), for all t such that c(t) 6= 0, by

u∗1(t) = −
u∗2 〈λ, [F2, [F0, F1]]〉+ 〈λ, [F0, [F0, F1]]〉

〈λ, [F1, [F0, F1]]〉
.

Let now c(t) ≡ 0. In this case, from (17) and (18) and since kg 6= kig, we deduce that A ≡ 0 and
x4B ≡ 0, which are equivalent to

{

λ̄3 − b1λ5(t)− a1λ6(t) ≡ 0

x4(t)(−λ4(t) + b2λ5(t) + a2λ6(t)) ≡ 0

Using these relation and the behavior of µ, ve, the dynamics for λ5 in (11) gives λ̇5 ≡ 0. Hence,
differentiating the first equation with respect to time we obtain that λ̇6 ≡ 0. Therefore, imposing
that the right hand side in the dynamics for λ6 vanishes identically we obtain that the pair (λ5, λ6)
is constant. Indeed, it is the unique solution to the linear system

{

A ≡ 0,
d
dt
A ≡ 0,

whose coefficients depending only on x, λ̄3 and which has determinant a1(b1µ̄−a1v̄). By assumption,
this determinant is nonzero and the unique solution of the system is

λ̄5(t) ≡ λ̄3
µ̄

b1µ̄− a1v̄
, λ̄6(t) ≡ −λ̄3

v̄

b1µ̄− a1v̄
.

Assuming that the zeros of x4 and B are finite union of intervals, then [a, b] = ∪N
i=1[ai, bi], where

ai+1 = bi and on each [ai, bi], x4|[ai,bi] ≡ 0 or B|[ai,bi] ≡ 0.
Let x4|[ai,bi] ≡ 0. Then plugging λ̄5, λ̄6 into (11), the equation for λ4 becomes

λ̇4 =
kiezkigvzmaxx6x7

kz(x5 + kiezx7)(x3 + kigx7)
(λ̄4 − b2λ̄5 − a2λ̄6). (19)

Hence λ4(t) is uniquely determined as a function of x(·) and x(tf ), for the right hand side of (19)
depends only on x(·), x(tf ) and not on other components of λ. Moreover, that x4 ≡ 0 implies
jointly with the evolution equation for x4 that u∗2 ≡ 0. Hence, from the condition H = const we
deduce that λ7 is constant.
Let now B|[ai,bi] ≡ 0. Then from

λ̇4 = −kzx6x
3
7

x3 + kigx7
x4 + kzx7

B.

11



one deduces that λ4 is constant, and it is given by

λ̄4(t) ≡ λ̄3
b2µ̄− a2v̄

b1µ̄− a1v̄
.

Again, the condition H = const implies that λ7 is constant, whence the whole covector is constant.
�

4 Oxigen as a control

In this section we assume (x03, x
0
4, x

0
5, x

0
6, x

0
7) is given such that there exists (x̄1, x̄2, x

0
3, x

0
4, x

0
5, x

0
6, x

0
7) ∈

D for which a solution of the optimal control problem in the previous section is a trajectory
corresponding to a piecewise constant control (u∗1(t), u

∗
2(t)).

We assume that that the oxygen affects the system and that we control oxygen concentration.
Let u3 = O. We model µ, ve as

µ = µ̃(x3, x4, x5, x7)σ(u3), ve = ṽe(x3, x4, x5, x7)
1

σ(u3)
,

where σ(u3) is an affine function of vo = u3

ko+u3
and µ̃, ṽe are positive functions. We assume that

σ : R+ → R satisfies
σ(0) = l > 0, lim

z→+∞
σ(z) = L > l, (20)

and σ′(z) > 0 for every z ≥ 0. We study a new optimal control problem

max
0≤u3≤1

x5(tf ) (21)

subject to






























ẋ3 = Fu∗1 − vg(x3, x5, x7)x6

ẋ4 = Fu∗2 − vz(x3, x4, x5, x7)x6

ẋ5 = ṽe(x3, x4, x5, x7)x6
1

σ(u3)

ẋ6 = µ̃(x3, x4, x5, x7)x6σ(u3)

ẋ7 = F,

(22)

and
(x3(0), x4(0), x5(0), x6(0), x7(0)) = (x03, x

0
4, x

0
5, x

0
6, x

0
7).

For simplicity, let us denote by x the tuple (x3, x4, x5, x6, x7) and by λ the corresponding covector
(λ3, λ4, λ5, λ6, λ7). The Hamiltonian becomes

H(x, λ, u3) = λ3(Fu
∗
1 − vgx6) + λ4(Fu

∗
2 − vzx6) + x6

(

λ5
ṽe

σ(u3)
+ λ6µ̃σ(u3)

)

+ λ7F, (23)

12



and the covector satisfies






































λ̇3 = x6

(

∂vg
∂x3

λ3 +
∂vz
∂x3

λ4 −
∂ve
∂x3

λ5 −
∂µ
∂x3

λ6

)

λ̇4 = x6

(

∂vz
∂x4

λ4 −
∂ve
∂x4

λ5 −
∂µ
∂x4

λ6

)

λ̇5 = x6

(

∂vg
∂x5

λ3 +
∂vz
∂x5

λ4 −
∂ve
∂x5

λ5 −
∂µ
∂x5

λ6

)

λ̇6 = vgλ3 + vzλ4 − veλ5 − µλ6

λ̇7 = x6

(

∂vg
∂x7

λ3 +
∂vz
∂x7

λ4 −
∂ve
∂x7

λ5 −
∂µ
∂x7

λ6

)

.

(24)

The transversality conditions reads λ(tf ) = ∇ψ(x(tf )) = (0, 0, 1, 0, 0) hence λ5(tf ) = 1, λ6(tf ) = 0.
To maximize H(x, λ, u3) with respect to u3, we compute

∂H

∂u3
= x6σ

′(u3)

(

−λ5
ṽe

σ(u3)2
+ λ6µ̃

)

.

Clearly, x6(t) > 0 for every t. Notice that at the final time the maximization condition implies that
u3(tf ) maximizes x6(tf )ṽe(tf )/σ(u3). If ṽe(tf ) > 0 then u3(tf ) = 0, otherwise, u3(tf ) = 1.

We say that x(·) has a singular arc on [a, b] ⊂ [0, tf ], with a < b, if ∂H
∂u3

≡ 0. As noted in the

previous section, more degenerate situations can happen: for instance, the set of zeros of ∂H
∂u3

≡ 0
can have non-isolated points without containing a whole interval. In the following theorem we
assume that the set of zeros of ∂H

∂u3
≡ 0 is given by a whole interval and we exclude chattering

phenomena.
If the components λ5, λ6 of a solution of (24) have only isolated zeros on [a, b] then the only

possibility for a singular arc, i.e., for ∂H
∂u3

to vanish identically, is that λ5λ6 > 0 and
√

λ5ṽe
λ6µ̃

∈ [l, σ(1)]

almost everywhere on [a, b]. In that case, u3 = σ−1
(√

λ5ṽe
λ6µ̃

)

. Such singular arc can indeed happen.

In other words, ∂H
∂u3

≡ 0 does not imply λ5 ≡ 0, λ6 ≡ 0. To see this, note that if there exists

t0 such that λ5(t0) 6= 0 and λ6(t0) = 0 then ∂H
∂u3

(t0) 6= 0. Similarly, if there exists t0 such that

λ5(t0) = 0 and λ6(t0) 6= 0 then ∂H
∂u3

(t0) 6= 0. If λ5(t0)λ5(t0) < 0 then ∂H
∂u3

(t0) 6= 0. On the

contrary, if λ5(t0)λ5(t0) > 0, then the equation ∂H
∂u3

(t0) = 0 has a solution u3 ∈ [0, 1] if and only if
√

λ5(t0)ṽe(t0)
λ6(t0)µ̃(t0)

∈ [l, σ(1)].

If we assume that there are no chattering phenomena, then a singular arc is either of the type
above or it satisfies λ5 ≡ 0, λ6 ≡ 0. In the latter case, under assumptions (20) on the behavior of
σ and some additional conditions on x3, x4, we show the following assertion.

Proposition 2 Assume that the inhibition constants for glucose and xylose are different, i.e., kgie 6=
kzie. Let x : [0, tf ] → R

5 be an optimal trajectory such that, for every t ∈ (0, tf ), x3(t) + x4(t) > 0
and both sets {t | x3(t) = 0} and {t | x4(t) = 0} are finite unions of intervals. If x(·) has a singular
arc on [a, b] such that λ5 ≡ 0 and λ6 ≡ 0, then λ7 is constant and there are two possibilities:

• x3|[a,b] ≡ 0, λ3(t) = λ3(a)
∫ t

0 (x6(s)
∂vg
∂x3

(s)) ds, λ4 vanishes identically on [a, b];

• x4|[a,b] ≡ 0, λ4(t) = λ4(a)
∫ t

0 (x6(s)
∂vz
∂x4

(s)) ds, λ3 vanishes identically on [a, b].
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Note that we cannot prove the absence of optimal singular trajectories, not even for generic
initial conditions. Proposition 2 only provides properties of optimal singular trajectories where
λ5 ≡ 0 and λ6 ≡ 0.

Since vg, vz are given by equations (7), (8), one easily deduce that at a certain time t, vg(t),
respectively vz(t), is positive if and only if x3(t) > 0, respectively x4(t) > 0. Moreover, ethanol
flux ve is positive1 if at least one among glucose and xylose concentrations is positive. Therefore,
since in Section 3 we optimize the final amount of ethanol through control of feeding rates of
xylose and glucose, it is reasonable to assume that the open loop controls u∗1(t), u

∗
2(t) are such that

vg(t) + vz(t) > 0 for every t.
Proof of Proposition 2. Assume x(·) to be an optimal trajectory having a singular arc on
[a, b] such that λ5 ≡ 0 and λ6 ≡ 0. Since the functional to maximize (21) is ψ(x) = x5, we have
λ5(tf ) = 1, which implies b < tf . Imposing conditions λ̇5 ≡ 0 and λ̇6 ≡ 0, we obtain a linear
homogeneous system in (λ3, λ4),

{

∂vg
∂x5

λ3 +
∂vz
∂x5

λ4 = 0

vgλ3 + vzλ4 = 0.
(25)

An easy computation shows that the determinant of system (25) is proportional to

x3x4(k
g
ie − kzie),

through a nonvanishing factor. By assumption, kgie − kzie 6= 0.
Case 1. Assume there exists t0 ∈ [a, b] such that x3(t0)x4(t0) > 0 then (λ3, λ4)(t0) = 0. Hence

(λ3, λ4)|[a,b] ≡ 0. Imposing that λ satisfies the Hamiltonian system on [a, b], since the equations
for (λ3, λ4, λ5, λ6) do not depend on λ7 and are homogeneous in (λ3, λ4, λ5, λ6) we deduce that
λ3, λ4, λ5, λ6 vanish identically on the whole interval [0, tf ], which contradicts λ5(tf ) = 1.

Case 2. Assume now x3x4 ≡ 0 on [a, b]. Then, since zeros of x3, x4 are finite union of intervals
and x3 + x4 > 0, there exists a finite decomposition [a, b] = ∪m

i=1[ai, bi], (bi = ai+1) where on each
subinterval exactly one among x3, x4 vanishes identically and the other one is strictly positive. We
are going to show that m is equal to 1.

Consider a subinterval [ai, bi] where x3 ≡ 0. Then system (25) implies λ4 ≡ 0 on [ai, bi].
Moreover, since the evolution equation for λ4 does not involve λ3 and λ5 ≡ λ6 ≡ 0 on [a, b], we
deduce that λ4 vanishes identically on the whole interval [a, b]. Using the evolution equation for
λ3, λ7 we obtain

λ̇3 = x6

(

∂vg
∂x3

λ3 +
∂vz
∂x3

λ4

)

= x6
∂vg
∂x3

λ3

λ̇7 = x6

(

∂vg
∂x7

λ3 +
∂vz
∂x7

λ4

)

= x6
∂vg
∂x7

λ3 ≡ 0,

where the last identity is a consequence of vg being proportional to x3. Hence λ3|[ai,bi] is completely
determined as functions of x and λ7 is constant on [ai, bi].

1This is a consequence of the fact that growth of bacteria in the bioreactor happensx if substrates are given. Also,

ethanol is a byproduct of the metabolic activity of the growing bacteria. In other words, biomass growth rate µ, and

consequently ethanol flux ve, is positive only if sugars are given.
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Consider now a subinterval [aj , bj ] where x4 ≡ 0. Then system (25) implies λ3 ≡ 0 on [aj , bj].
Using the evolution equation for λ4, λ7 we obtain

λ̇4 =
∂vz
∂x4

x6λ4

λ̇7 = x6

(

∂vg
∂x7

λ3 +
∂vz
∂x7

λ4

)

≡ 0,

where the last identity is a consequence of vz being proportional to x4. Hence, on [aj , bj ] λ4 is
determined as a function of x and λ3 vanishes identically.

Let now m ≥ 2, i.e., assume that there exists [a1, b1] ⊂ [a, b] on which x3 ≡ 0 and [a2, b2] ⊂ [a, b]
on which x4 ≡ 0 and b1 ≤ a1. Then λ4 vanishes on the whole [a, b] and λ3 vanishes on [a2, b2].
Hence on [a2, b2] we have λi ≡ 0 for every i = 3, 4, 5, 6. Since the dynamics for λ3, λ4, λ5, λ6 is
linear and homogeneous (and it does not depend on λ7), this implies λi ≡ 0 on the whole interval
[0, tf ]. This contradicts λ5(tf ) = 1. Therefore m = 1 and the statement is proved. �

References

[1] J. Alford. Bioprocess control: Advances and challenges. Computers & Chemical Engineering, 30(10-
12):1464–1475, 2006.

[2] P. T. Benavides and U. Diwekar. Optimal control of biodiesel production in a batch reactor: Part i:
Deterministic control. Fuel, 94(0):211 – 217, 2012.

[3] A. Bressan and B. Piccoli. Introduction to the mathematical theory of control, volume 2 of AIMS Series
on Applied Mathematics. American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2007.
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