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Regularization of chattering phenomena via bounded

variation controls

Marco Caponigro∗ Roberta Ghezzi† Benedetto Piccoli‡ Emmanuel Trélat§

Abstract

In optimal control there may be bad oscillatory phenomena. For instance, this is the case
for Fuller’s phenomenon [9] where the optimal control is bang-bang with an infinite number of
switchings in finite time. In the framework of hybrid systems, there are optimization problems
where the discrete part of the dynamics switches infinitely many times in finite time [13] (and this
is known as Zeno’s phenomenon.)

In this paper we provide a technique to regularize this kind of phenomena. Namely, we define a
BV regularization of a general optimal control problem and show that the solution of the perturbed
problem is quasi-optimal for the reference problem in the sense that the loss of optimality is small.
We apply our results to hybrid systems and we estimate the decay of the error, when the total
variation of the control grows.

1 Introduction

Chattering phenomena in optimal control have been known since the first example presented in [9].
Roughly speaking, chattering is a degeneracy phenomenon in which a control oscillates or switches
infinitely many times over a finite time interval. To explain this behavior, let us recall the example in
[9], also known as Fuller’s problem. Consider the control system

{

ẋ1 = x2,

ẋ2 = u,
(1)

where an external agent acts on the system by modifying the acceleration, and the control u : [0, T ] →
[−1, 1] is measurable. The optimal control problem is to minimize the functional

∫ T

0
x21(t) dt (2)

among trajectories of (1) steering an initial point (x01, x
0
2) to the origin, i.e., satisfying initial and

terminal constraints
x1(0) = x01, x2(0) = x02,

x1(T ) = 0, x2(T ) = 0.
(3)
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§Université Pierre et Marie Curie (Univ. Paris 6) and Institut Universitaire de France, CNRS UMR 7598, Laboratoire

Jacques-Louis Lions, F-75005, Paris, France (emmanuel.trelat@upmc.fr)

1

http://arxiv.org/abs/1303.5796v2


It has been shown that for every (x01, x
0
2) there exists a unique control u0 : [0, T 0] → [−1, 1] which is a

solution to (1), (2), (3) and which has the following form

u(t) =

{

1, t ∈ [t2k, t2k+1], k ∈ N

−1, t ∈ [t2k+1, t2k+2], k ∈ N

where {tk}k∈N is an increasing sequence of switching times, depending on the initial condition (x01, x
0
2)

and converging to T 0 < ∞. Although at first sight one could think this kind of degeneracy is related
to specific symmetries of the system, it turns out that this behavior is rather typical. Indeed, it was
later shown in the fundamental work [14] that the set of single-input optimal control problems which
have control-affine Hamiltonian and whose solution is chattering is an open semi-algebraic set.

Optimal controls showing this degenerate structure has been found for a variety of problems:
besides the ones mentioned above, this phenomenon also concerns state constrained problems and
hybrid systems. For instance, in [16] the author studied an optimal control problem with an inequality
state constraint of third order and showed that the optimal trajectory touches the constraint boundary
at an infinite sequence of times approaching a finite limit (Robbins’ phenomenon). As it happens for
Fuller’s phenomenon, it turns out that Robbins’ phenomenon is in a sense generic, when the order
of the state constraint is sufficiently high, see [4]. In the framework of hybrid systems, chattering is
also known as Zeno’s phenomenon and it is related to the presence of trajectories whose discrete part
jumps infinitely many times in a finite time interval (see the two examples in [11]).

Chattering causes several difficulties in theoretical aspects of optimal control as well as in appli-
cations. From a theoretical point of view it prevents a direct application of Pontryagin’s Maximum
Principle because of the lack of a positive length interval where the control function is continuous. This
implies that, when chattering is included in the analysis, finding necessary and sufficient optimality
conditions becomes more intricate (see [8] for the case of state constrained problems). Some results in
this sense were proved in [18], yet the problem is not completely understood in many contexts, such
as state constrained problems or hybrid systems [13]. Another delicate issue comes from the study of
regularity properties of optimal syntheses [5, 15].

As concerns applications, chattering phenomena are often an obstacle when using numerical meth-
ods to attack optimal control problems. For instance, for single-input problems with a scalar state
constraint the presence of chattering may imply ill-posedness (non-invertible Jacobian) of shooting
methods [3]. Likewise, as remarked by the authors in [1], the interior point-based algorithm developed
appears not to converge when applied to Fuller’s problem.

The main motivation of this paper is to provide convergence of numerical methods when chattering
takes place. We consider a fully nonlinear control system and optimize a cost of Bolza type with
continuous Lagrangian. We define a sequence of relaxed problems obtained by adding a term of
total variation of the control in the cost functional. Thanks to small time local controllability, under
equiboundedness of trajectories and some convexity properties of the set of velocities for the augmented
system, we show the convergence of the cost functional along a sequence of solutions of the relaxed
problems.

We also study how fast the cost converges as the total variation of controls in the approximating
sequence grows. Namely, we estimate explicitly the rate of convergence of the cost along suboptimal
regimes obtained by suitable truncations of the chattering one in terms of switching times. A related
result was proved in [19, 20] for small perturbations of the Fuller’s problem. In those papers, the
authors exhibit a sequence of suboptimal regimes for a control system having (1) as principal part and
for the cost (2) and they prove that the cost converges with the same rate as the sequence of switching
times (of the chattering control). Here we obtain a similar result for nonlinear control systems with
a general cost of integral type, only assuming small time local controllability at the final point and
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holderianity of the time-optimal map. In particular, this allows us to sharpen the convergence rate of
the cost along the sequence of solutions of the relaxed problem.

Notice that for the case considered in [20], the rate of convergence happens to be exponential as a
function of the number of switchings. Likewise, for the class of systems considered in [14], the switching
times converge exponentially to the final time. Nevertheless, whether a slower rate of convergence is
“typical” still remains an open question.

Finally, we apply our result to optimization problems for hybrid systems, obtaining estimates of
the cost convergence as the number of switchings grows.

The paper is organized as follows. In Section 2 we define chattering and state the main results.
Applications of the main results to hybrid systems are given in Section 3. Section 4 is devoted to the
proofs of Theorems 1 and 2. Finally, we show in Appendix 5 an existence result for optimal control
problems without convexity assumptions, using a total variation term in the cost.

2 Main results

Consider the control system
ẋ = f(x, u), u ∈ U , (4)

where f ∈ C∞(RN × R
m,RN ) and f(0, 0) = 0. Given U ⊂ R

m, set

U = {u : [0, tu] → U measurable, tu > 0}.

Denote by
F = {f(·, u) : RN → R

N | u ∈ U}

the family of vector fields associated with the dynamics of (4). Given an initial state x0, a Lagrangian
L ∈ C0(R× R

N × R
m), and ε > 0 we consider the optimal control problem

min
u∈U ,T>0

(
∫ T

0
L(s, x(s), u(s)) ds + εTV (u)

)

, (5)

with initial and final constraints

x(0) = x0, x(T ) = 0, (6)

where TV (u) denotes the total variation of u.

Definition 1. By chattering control we mean a measurable u : [0, tu] → U such that there exists an
increasing sequence {tn}n∈N converging to tu with the property that TV (u|[0,tn]) < ∞ for every n, and

lim
n→∞

TV (u|[0,tn]) = +∞.

In the following result we consider the case in which problem (4), (5), (6), with ε = 0 has an
optimal solution which either has bounded total variation either is chattering in the sense above.

Theorem 1. Assume that

(i) Lie0F = T0R
N and 0 is small time locally controllable for the control system (4);

(ii) the optimal control problem (4), (5), (6) with ε = 0 admits a unique solution u∗ : [0, T ∗] → U

whose corresponding trajectory is denoted by x∗;
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(iii) for every (t, x) ∈ R× R
N the set

V (t, x) = {(f(x, u), L(t, x, u) + γ) | u ∈ U, γ > 0}

is convex;

(iv) there exists b > 0 such that, for every u ∈ U whose corresponding trajectory satisfies (6), we
have

tu + ||xu||∞ 6 b

and U is compact.

Then, for every ε > 0, the optimal control problem (4), (5), (6), admits a solution uε : [0, Tε] → U.
Moreover,

lim
ε→0

∫ Tε

0
L(t, xε(t), uε(t)) dt =

∫ T ∗

0
L(t, x∗(t), u∗(t)) dt. (7)

Theorem 1 implies that whenever the optimal control u∗ is chattering, it can be replaced by a
non-chattering one uε, paying a price that goes to zero as the total variation of uε grows. In other
words, uε is quasi-optimal for the problem with ε = 0 in the sense that the cost along uε converges
to the value function of the reference problem. To prove Theorem 1 we use an auxiliary result (see
Lemma 2 in Section 4) which provides convergence of the cost along a sequence of controls obtained
by truncating the optimal chattering control, without the convexity assumptions (iii) or the a priori
estimates (iv) on trajectories.

Remark 1. According to Definition 1, a control having one accumulation of switchings is chattering.
When a solution of (4), (5) with ε = 0, (6) presents a finite number of accumulations of switchings
the problem can be tackled by applying iteratively Theorem 1.

The estimate on the error as the total variation grows can be sharpened. This is the statement
of next theorem which gives the existence of suboptimal controls whose associated cost converges
sufficiently fast to the optimal one. The rate of convergence is related to the regularity of the time-
optimal map defined below. The idea is to consider the optimal control u∗ until a time T ∗−η and then
steer the system to the origin with a control having total variation uniformly bounded with respect
to η.

We define the time-optimal map associated with the problem (4), (6) as

Υ(x0) = inf{T > 0 | ẋ = f(x, u), x(0) = x0, x(T ) = 0}.

Theorem 2. Assume that

(i) Lie0F = T0R
N and 0 is small time locally controllable for the control system (4).

(ii) The optimal control problem (4), (5), (6) with ε = 0 admits a unique solution u∗ : [0, T ∗] → U

whose corresponding trajectory is denoted by x∗.

(iii) The time-optimal map is C0,α for some α ∈ (0, 1] on a neighborhood of 0.

Then there exist η0 > 0 and C > 0 such that for any η < η0 there exists an admissible control
vη : [0, Tη ] → U whose corresponding trajectory xη : [0, Tη ] → R

N starting at x0 satisfies the terminal
constraint xη(Tη) = 0, such that TV (vη) < ∞, and

∫ Tη

0
L(t, xη , vη) dt−

∫ T ∗

0
L(t, x∗, u∗) dt 6 Cηα. (8)
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Moreover, the following convergences hold

lim
η→0

Tη = T ∗

lim
η→0

‖vη − u∗‖L1 = 0

lim
η→0

‖xη − x∗‖∞ = 0.

Remark 2. Sufficient conditions for Assumption (iii) have been studied in [2]. Moreover the authors
provide an estimate on the Hölder exponent.

The following corollary combines Theorems 1 and 2. It gives an estimate on the rate of convergence
of the cost for the optimal control problem (4),(5),(6) with ε > 0 to the optimal cost with ε = 0 in
terms of the growth of the total variations of the optimal controls.

Corollary 1. Let assumptions (i)− (iv) of Theorem 1 hold. Assume moreover that

(v) the time-optimal map Υ is C0,α for some α ∈ (0, 1] on a neighborhood of 0;

Then, for every ε > 0, the optimal control problem (4), (5), (6), admits a solution uε : [0, Tε] → U.
Moreover, there exists M > 0 such that

∫ Tε

0
L(t, xε(t), uε(t)) dt −

∫ T ∗

0
L(t, x∗(t), u∗(t)) dt 6 M(µα + ε), (9)

where µ is such that
TV (u∗|[0,T ∗−µ]) 6 TV (uε).

3 Application to hybrid systems

In this section, we prove a direct adaptation of Theorem 1 to hybrid systems. To this aim, we first
recall some basic definitions in the context of hybrid systems (see also [10, 13]).

A hybrid system is a collection H = (Q,X, f,E,G,R) where

• Q is a finite set;

• X = {Xq}q∈Q is a collection of subsets Xq ⊂ R
N called locations;

• f = {fq}q∈Q is a collection of smooth vector fields fq : R
N → R

N ;

• E ⊂ Q×Q is a subset of edges;

• G is a set-valued map that associates with each edge (q, q′) ∈ E a subset G(q, q′) ⊂ Xq called
guard set ;

• R is a set-valued map that associates with each pair ((q, q′), x) ∈ E×Xq a subset R((q, q′), x) ⊂
Xq′ .

A trajectory of H is a triple (τ, q(·), x(·)) where

• τ = {τi}
M
i=0 is a sequence of increasing positive numbers such that τ0 = 0 and M 6 ∞. Set

I = [0, τM ] if M < ∞, I = [0, τM ) if M = ∞.

• q : I → Q is such that, for every i = 0, . . .M − 1, q(t) is constant on [τi, τi+1). Set qi = q|[τi,τi+1)
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• for every i = 0, . . . ,M − 1, xi(·) = x|(τi,τi+1) is an absolutely continuous function in (τi, τi+1),
continuously prolongable to [τi, τi+1] and such that xi(t) ∈ Xqi .

• for almost every t ∈ (τi, τi+1)
ẋi = fqi(xi). (10)

• for every i = 0, . . . ,M − 1 (qi, qi+1) ∈ E, xi(τi+1) ∈ G(qi, qi+1) and, for every i = 0, . . . ,M − 2,
xi+1(τi+1) ∈ R((qi, q+1), xi(τi+1)).

A trajectory (τ, q(·), x(·)) is called Zeno if M = ∞ and τ∞ < ∞. Note that in this case we have

τ∞ =

∞
∑

i=0

τi < ∞.

Given a hybrid system H, a Lagrangian for H is a family L = {Lq}q∈Q, Lq : R ×Xq → R such that,
for every trajectory (t, q(·), x(·)) of H and every i = 0, . . .M − 1, the function t 7→ Lqi(t, xi(t)) is
continuous in (ti, ti+1). Given a Lagrangian for H, we can define the corresponding cost functional C
by

C(τ, q(·), x(·)) =
M−1
∑

i=0

∫ ti+1

ti

Lqi(t, xi(t)) dt.

Casting Theorem 1 in the language of hybrid systems we obtain the following result. Let H =
(Q,X, f,E,G,R) be a hybrid system with a Lagrangian L and corresponding cost functional C. Fix
an initial condition (q0, x0) ∈ Q×Xq0 .

Theorem 3. Let H be a hybrid system such that 1 Xq = R
N for every q ∈ Q and let L be a

Lagrangian for H with corresponding cost functional C(·). Assume that (τ∗, q∗(·), x∗(·)) is a Zeno
trajectory starting at (q0, x0) and that

C(τ∗, q∗(·), x∗(·)) = min
(τ,q(·),x(·))

C(τ, q(·), x(·)) < ∞,

where the minimum is taken over all trajectories of H starting at (q0, x0). Let τ∗ = {τ∗i }
∞
i=0. Define

the sequence of trajectories (τn, qn(·), xn(·)) by

• τn = {τ∗0 , τ
∗
1 , . . . , τ

∗
n, τ

∗
∞};

• qn(t) = q∗(t) for every t ∈ [0, τ∗n), q
n(t) ≡ q∗(τ∗n) for t ∈ [τn, τ

∗
∞];

• xn(t) = x∗(t) for every t ∈ [0, τ∗n ] and for almost every t ∈ [τ∗n, τ
∗
∞] xn satisfies

ẋn(t) = fq∗(τ∗n)(x
n(t)).

Then the following convergences hold

||xn(·)− x∗(·)||∞ = O(τ∗∞ − τ∗n) (11)

C(τn, qn(·), xn(·)) − C(τ∗, q∗(·), x∗(·)) = O(τ∗∞ − τ∗n). (12)

The main idea is to interpret the role of the discrete part of the hybrid system in (10) as a control.
Since there are no final constraints the proof simplifies with respect to the proof of Theorems 1, 2.

1The assumption Xq = R
N is not essential and can be dropped, provided that each location Xq is invariant with

respect to the vector field fq′ for every q′
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Proof. Since qn(t) converges to q∗(t) almost everywhere in [0, τ∗∞], by [17, Theorem 1 p.57] we deduce
(11). As for (12), notice that since the Lagrangian is continuous, there exist constants c̃, c such that
c̃− c > 0, for every n

∫ τ∗∞

τ∗n

Lq∗(τ∗n)
(t, xn(t))dt 6 c̃(τ∗∞ − τ∗n),

and, for every i,
Lq∗(τ∗i )

(t, x∗(t)) > c, almost everywhere in [τ∗i , τ
∗
i+1].

Therefore,

0 6 C(τn, qn(·), xn(·))− C(τ∗, q∗(·), x∗(·)) =

∫ τ∗∞

τ∗n

Lq∗(τni
)(t, x

n(t))dt−
∞
∑

i=n

∫ τ∗i+1

τ∗i

Lq∗(t)(t, x
∗(t))dt

6 c̃(τ∗∞ − τ∗n)− c

∞
∑

i=n

(τ∗i+1 − τ∗i ) = (c̃− c)(τ∗∞ − τ∗n).

This concludes the proof.

4 Proofs of the main results

4.1 Proof of Theorem 1

Before going into technical details, let us outline the proof of Theorem 1. First, we remark that
the local controllability assumption provides existence of a solution uε, xε to (4), (5), (6), for ε > 0.
Second, we show that, thanks to the assumptions on the velocity sets and the equiboundedness of
trajectories, there exists an admissible control w and a positive measurable function γ such that
t 7→ (f(xε(t), uε(t)), L(t, xε(t), uε(t)) converges to t 7→ (f(xw(t), w(t)), L(t, xw(t), w(t)) + γ(t)) for the
weak∗ topology in L∞. Third, we use the optimality of uε to prove that w is optimal for the problem
with ε = 0, which by uniqueness implies w = u∗. Fourth, we demonstrate γ = 0 which implies that
the Lagrangian cost along uε converges to the Lagrangian cost at u∗. This fact is proved thanks
to Lemma 2 which exhibits a sequence of admissible controls vη for which TV (vη) < ∞ and the
Lagrangian cost converges to the Lagrangian cost at u∗. Finally, to construct vη we use a topological
result, Lemma 1, providing admissible controls steering a point to the origin with total variation
uniformly bounded in a neighborhood of the origin.

For the sake of readability, we start by presenting the two auxiliary lemmas mentioned above and
then proceed to the proof of the theorem.

Lemma 1. Assume that Lie0F = T0R
N , the origin is small time locally controllable and let T0 > 0.

Then there exist r,M > 0 such that for every y with |y| 6 r there exists a piecewise constant control
wy : [0, τy ] → U with the following properties:

(i) wy steers y to 0 in time τy 6 T0;

(ii) sup|y|6r TV (wy) 6 M .

Proof. Call A(x, [0, T ), f) the set of points accessible from x in time t < T by trajectories of the
control system ẋ = f(x, u), u ∈ U . Since 0 is STLC for the control system (4) defined by f , thanks to
[12, Theorem 5.3 a-d], it is also STLC for the system associated with −f . Therefore, for every T > 0
there exists a ball Br(0) centered in the origin of radius r compactly contained in A(0, [0, T ),−f).
Since f is autonomous, for every y ∈ Br(0), we have

0 ∈ A(y, [0, T ), f) ⇐⇒ y ∈ A(0, [0, T ),−f).
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Since 0 is STLC for −f , Theorem 5.3 in [12] implies that 0 is is small time normally self reachable
(STNSR) (see [12, Definition 3.6]) for the system associated with −f . Applying [12, Theorem 5.5],
since y ∈ A(0, [0, T ),−f) and 0 is STNSR for −f then y is normally reachable (see [12, Definition 3.6])
from 0 in time less than T for the system associated with −f . Namely, there exist q = q(y) ∈ N,
u1, . . . uq ∈ U and (t1, . . . , tq) with t1 + · · · + tq 6 T such that the map

(s1, . . . , sq) 7→ Eu(s1, . . . , sq) = 0 ◦ e−s1f(·,u1) ◦ · · · ◦ e−sqf(·,uq), (13)

which is defined and smooth in a neighborhood N of (t1, . . . , tq), satisfies Eu(t1, . . . , tq) = y and has
maximal rank (equal to N) at (t1, . . . , tq). Hence there exist a neighborhood Oy ⊂ A(0, [0, T ),−f) of
y on which the map Eu is onto. Moreover, by continuity of the map (13), there exists c = c(y) such
that

sup
x∈Oy

{s1 + · · ·+ sq | (s1, . . . , sq) ∈ N ∪ E−1
u (x)} 6 c(y)T.

In other words every point of Oy is reachable from 0 with piecewise constant control with less than
q = q(y) switchings in time smaller than c(y)T via the system ẋ = −f(x, u). Reversing time we have
that for every point x in Oy there exists a piecewise constant control with less than q = q(y) switchings
steering system ẋ = f(x, u) from x to 0 in time smaller than c(y)T .

By compactness, there exist y1, . . . , ym such that Br(0) ⊂
⋃m

k=1Oyk and, for T sufficiently small,
we can assume that T

∑m
k=1 c(yk) < T0. Hence, using the argument above, every point y ∈ Br(0) can

be steered to 0 in time smaller than T
∑m

k=1 c(yk) by means of a piecewise constant control with less
than

∑m
k=1 q(yk) switchings.

Lemma 2. Assume that

(i) Lie0F = T0R
N and 0 is small time locally controllable for the control system (4).

(ii) The optimal control problem (4), (5), (6) with ε = 0 admits a unique solution u∗ : [0, T ∗] → U

whose corresponding trajectory is denoted by x∗.

Then there exists η0 > 0 such that for any η < η0 there exists an admissible control vη : [0, Tη ] →
U whose corresponding trajectory xη : [0, Tη ] → R

N starting at x0 satisfies the terminal constraint
xη(Tη) = 0, such that TV (vη) 6 TV (u∗|[0,T ∗−η]) +M , and

lim
η→0

∫ Tη

0
L(t, xη, vη) dt =

∫ T ∗

0
L(t, x∗, u∗) dt. (14)

Moreover, the following convergences hold

lim
η→0

Tη = T ∗

lim
η→0

‖vη − u∗‖L1 = 0

lim
η→0

‖xη − x∗‖∞ = 0.

Proof. Let r and M be given by Lemma 1 and let η0 be such that for every s > T ∗ − η0 there holds
|x∗(s)| 6 r. For every η < η0 set tη = T ∗ − η. Let K = max[0,T ∗] |f(x

∗(t), u∗(t))|, then

|x∗(tη)| = |x∗(tη)− x∗(T ∗)| 6 K(T ∗ − tη) = Kη.
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By Lemma 1 there exists a piecewise constant control wη steering x∗(tη) to 0 in time τη with TV (wη) 6
M . Define vη by

vη(t) =











u∗(t) for t ∈ [0, tη ],

wη(t− tη) for t ∈ (tη, Tη ],

0, for t ∈ (Tη, T̄ ],

(15)

where Tη = tη + τη and T̄ = sup06η<η0
Tη. Denote by xη(t), t ∈ [0, T̄ ] the trajectory of (4) associated

with the control vη. By construction

TV (vη) 6 TV (u∗|[0,tη ]) +M.

Moreover
lim
η→0

Tη = T ∗ and lim
η→0

‖vη − u∗‖L1 .

Now set X0 = {x∗(t) : t ∈ [0, tη]} ∪ Bη0(0), C0 = supX0×U |f |, C1 = supX0×U |∂xf |, and C2 =
supX0×U |∂uf |. For every t ∈ [0, T̄ ] and η < η0 one has

|xη(t)− x∗(t)| =

∣

∣

∣

∣

∫ t

0
f(xη(s), vη(s))ds−

∫ t

0
f(x∗(s), u∗(s))ds

∣

∣

∣

∣

6

∫ T̄

0
|f(xη(s), vη(s))− f(x∗(s), u∗(s))|ds + C0|T

∗ − Tη|

6

∫ T̄

0
|f(xη(s), u

∗(s))− f(x∗(s), u∗(s))|ds +C2‖u
∗ − vη‖L1 + C0|T

∗ − Tη|

6 C1

∫ T̄

0
|xη(s)− x∗(s)|ds + C2‖u

∗ − vη‖L1 +C0|T
∗ − Tη|,

thus, by Gronwall’s inequality,

‖xη − x∗‖∞ 6 (C2‖u
∗ − vη‖L1 + C0|T

∗ − Tη|) e
C1T̄ .

In particular limη→0 ‖xη − x∗‖∞ = 0.
Let us show the convergence (14). Notice that, by continuity of L, there exist constants c ∈ R and

C > 0 such that
L(t, x∗(t), u∗(t)) > c, almost everywhere in [0, T ∗],

and
|L(t, x, u)| 6 C̄, for almost every (t, x, u) ∈ [0, T̄ ]× X0 ×U.

Then

0 6

∫ Tη

0
L(t, xη(t), vη(t))dt−

∫ T ∗

0
L(t, x∗(t), u∗(t))dt

=

∫ Tη

tη

L(t, xη(t), vη(t))dt−

∫ T ∗

tη

L(t, x∗(t), u∗(t))dt

6 C̄τη − c(T ∗ − tη) = C̄τη − cη (16)

Therefore (14) is proved.

We are now in a position to prove the main result of the paper.
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Proof of Theorem 1. Thanks to assumption (i), there exists a control u : [0, tu] → U steering x0 to 0
and having bounded variation. Therefore, the existence of a solution uε : [0, tε] → U to (4), (5), (6),
follows by Theorem 4 in the Appendix. Denoting by xε the trajectory corresponding to uε we have
xε(0) = x0 and xε(tε) = 0. Let v ∈ U be any admissible control such that TV (v) < ∞, and such that
the corresponding trajectory satisfies (6). Then, by optimality of uε we have

∫ tε

0
L(t, xε, uε) dt+ εTV (uε) 6

∫ tv

0
L(t, xv, v) dt + εTV (v). (17)

Thanks to assumptions (iii) and (iv), and since U is compact, we are going to show that there exists
an admissible control w : [0, tw] → U and a positive measurable function γ : [0, tw] → R such that the
sequence of functions

t 7→ (f(xε(t), uε(t)), L(t, xε(t), uε(t)))

converges to
t 7→ (f(xw(t), w(t)), L(t, xw(t), w(t)) + γ(t))

with respect to the weak∗ topology of L∞ as ε tends to 0. To see this, consider the augmented system

ẋ = f(x, u), ẋN+1 = L(t, x, u),

with constraints
x(0) = x0, xN+1(0) = 0, x(T ) = 0, xN+1(T ) ∈ [0,Γ],

where Γ =
∫ tv
0 L(s, xv(s), v(s)) ds+ε TV (v) and v is as above. Denote by f̄(t, x, u) = (f(x, u), L(t, x, u))

the augmented dynamics.
Notice that thanks to assumption 2, the sequence tε is bounded and converges, up to subsequences,

to t0 > 0 as ε tends to 0. Hence, given δ > 0 there exists ε0 > 0 such that |tε− t0| < δ for every ε 6 ε0
in the chosen subsequence. Since f(0, 0) = 0, we can extend xε, uε to [tε, t0 + δ] by setting

xε(s) ≡ 0, uε(s) ≡ 0, ∀ s ∈ [tε, t0 + δ].

Since the trajectories xε are equibounded by assumption (iv), the sequence s 7→ f̄(s, xε(s), uε(s))
is bounded in L∞([0, t0 + δ],RN+1), whence, up to subsequences, it converges to a function g ∈
L∞([0, t0 + δ],RN+1) in the weak∗ topology. Define

x̄(t) = x̄0 +

∫ t

0
g(s) ds, x̄0 = (x0, 0).

By construction, t 7→ x̄(t) is absolutely continuous and, denoting by x̄ε(t) = (xε(t),
∫ t

0 L(s, xε(s), uε(s))ds),

lim
ε→0+

x̄ε(t) = x̄(t), ∀ t ∈ [0, t0 + δ].

(Note that by Ascoli Arzelà Theorem, since ẋε is equibounded the above convergence is uniform, i.e.,
x̄ε converges to x̄ uniformly on [0, t0 + δ].) Let x̄(t) = (x(t),xN+1(t)). We are going to prove that
x(t) is an admissible trajectory for (4), (6), corresponding to a control w. First notice that by the
pointwise convergence above, x(·) satisfies x(t0) = 0. Define h̄ε(s) = f̄(s,x(s), uε(s)). Then, for every
ε, h̄ε belongs to the set

V = {h ∈ L2([0, t0 + δ],RN+1) | h(s) ∈ V (s,x(s)) a.e. s ∈ [0, t0 + δ]}.

It is easy to see that V is closed in L2([0, t0+δ],RN+1) and, thanks to assumption (iii), V is also closed
with respect to the weak topology. Therefore, since h̄ε is equibounded in L2, up to subsequences, h̄ε
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converges weakly in L2 to h̄ ∈ V. By definition of V, this implies that for almost every s there exist
w(s) ∈ U and γ(s) > 0 such that h̄(s) = (f(x(s), w(s)), L(s,x(s), w(s)) + γ(s)).

We claim that h̄(s) = g(s) for almost every s ∈ [0, t0 + δ]. Indeed, for almost every s, since x̄ε
converges uniformly to x̄

|h̄ε(s)− f̄(s, xε(s), uε(s))| 6 const sup
s∈[0,t0+δ]

|x(s)− xε(s)| −−−→
ε→0

0.

Hence, by the dominated convergence theorem,

∫ t

0
|h̄ε(s)− f̄(s, xε(s), uε(s))| ds −−−→

ε→0
0, ∀ t ∈ [0, t0 + δ]. (18)

For all ϕ ∈ L2([0, t0 + δ],RN+1) and for all t ∈ [0, t0 + δ] we have

∫ t

0
ϕ(s)h̄ε(s) ds =

∫ t

0
ϕ(s)f̄(s, xε(s), uε(s)) ds +

∫ t

0
ϕ(s)(h̄ε(s)− f̄(s, xε(s), uε(s))) ds (19)

The left hand side of (19) converges to
∫ t

0 ϕ(s)h̄(s) ds by the weak convergence of h̄ε in L2. The right

hand side of (19) converges to
∫ t

0 ϕ(s)g(s) ds by the weak∗ convergence of s 7→ f̄(s, xε(s), uε(s)) in L∞

and by (18). Hence,
∫ t

0
ϕ(s)h̄(s) ds =

∫ t

0
ϕ(s)g(s) ds, ∀ϕ ∈ L2,

which gives h̄ = g almost everywhere. The existence of measurable choices of s 7→ w(s), s 7→ γ(s)
follows from Filippov Theorem see [6, Theorem 3.1.1] and, since h̄ = g, we deduce that the trajectory
corresponding to w is x. Hence in the following we denote x by xw and t0 by tw.

For every admissible control v ∈ U satisfying TV (v) < ∞ and the constraints (6),

∫ tw

0
L(t, xw(t), w(t)) dt 6

∫ tw

0
(L(t, xw(t), w(t)) + γ(t))dt

6 lim sup
ε→0

(
∫ tε

0
L(t, xε(t), uε(t)) + εTV (uε)

)

6

∫ tv

0
L(t, xv, v) dt,

where the last inequality follows by (17). By density of BV in L1 we conclude that for every control
v ∈ U steering x0 to 0 we have

∫ tw

0
L(t, xw(t), w(t)) dt 6

∫ tv

0
L(t, xv, v) dt,

i.e., w is optimal for (4), (5), (6) with ε = 0. By uniqueness of u∗ we have w = u∗ and tw = T ∗. To
prove (7), it is sufficient to show that

∫ T ∗

0
γ(t)dt = 0.

The chain of inequalities above allows to show that for every admissible control v ∈ U such that
TV (v) < ∞, we have

∫ T ∗

0
L(t, x∗(t), u∗(t)) dt 6

∫ tv

0
L(t, xv, v) dt − ||γ||L1 . (20)
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For η small enough, let vη be the control built in Lemma 2. If TV (u∗) < ∞ or u∗ is chattering, then
TV (vη) < ∞. Hence applying (20) to v = vη, we obtain that

∫ T ∗

0
L(t, x∗(t), u∗(t)) dt 6

∫ Tη

0
L(t, xη, vη) dt− ||γ||L1 .

Finally, thanks to (14), when η tend to 0 we deduce ||γ||L1 = 0.

4.2 Proof of Theorem 2

Comparing the statements of Theorems 1 and 2 one notices that in the latter there is no convexity
assumption for velocity sets and there is no equiboundedness of trajectories required. This is due to
the fact that the suboptimal controls are found by different methods: for Theorem 1 as the solution of
a relaxed problem, for Theorem 2 as a truncation of the given control u∗. Nevertheless, as it is evident
from the previous section (see Lemma 2), convergence of the cost along truncations of u∗ was also a
fundamental step in the proof of the first result. However, thanks to the regularity of the time-optimal
map, in Theorem 2 not only quasi-optimality of the truncations is proved but also a convergence rate
is provided.

The proof of Theorem 2 mainly follows the outline of the proof of Lemma 2. The main difference is
that in this case the extra assumption that the time-optimal map is Hölder implies an explicit estimate
on the rate of convergence of the costs.

Proof of Theorem 2. By assumption, there exist a ball BR(0) such that Υ ∈ C0,α(BR(0)). Let η0 be
such that |x∗(s)| 6 R for every s > T ∗−η0. For every η 6 η0, apply Lemma 1 with T0 = 2Υ(x∗(T ∗−η))
to the point y = x∗(T ∗ − η). Denote by wη : [0, τη ] → U the piecewise constant control provided by
Lemma 1. Then

τη 6 2Υ(x∗(T ∗ − η)) 6 2CΥ|x
∗(T ∗ − η)|α 6 const ηα.

TV (wη) 6 M.

Define vη by

vη(t) =











u∗(t) for t ∈ [0, T ∗ − η],

wη(t− tη) for t ∈ (T ∗ − η, Tη ],

0 t > Tη,

(21)

where Tη = T ∗ − η + τη.
Using the same argument as in the proof of Lemma 2, we obtain all the required convergences.

Finally, thanks to (16), since τη 6 const ηα, (8) is proved.

4.3 Proof of Corollary 1

Proof of Corollary 1. For every η > 0 consider the control wη : [0, τη ] → U, whose existence is stated
in Lemma 1, steering x∗(T ∗ − η) to 0 in time τη such that TV (wη) 6 M̃. Define vη by

vη(t) =

{

u∗(t) for t ∈ [0, T ∗ − η]

wη(t− (T ∗ − η)) for t ∈ (T ∗ − η, T ∗ − η + τη].

Let Tη = T ∗ − η + τη. Note that, by construction

TV (vη) 6 TV (u∗|[0,T ∗−η]) + M̃.

12



For ε > 0, by Theorem 1, there exists a control uε solution of (4), (5), (6). Therefore

∫ Tε

0
L(t, xε(t), uε(t)) dt + εTV (uε) 6

∫ Tη

0
L(t, xη(t), vη(t)) dt + εTV (vη),

and by Theorem 2

∫ Tη

0
L(t, xη(t), vη(t)) dt + εTV (vη) 6

∫ T ∗

0
L(t, x∗(t), u∗(t)) dt +Mηα + εTV (vη).

Therefore

∫ Tε

0
L(t, xε(t), uε(t)) dt−

∫ T ∗

0
L(t, x∗(t), u∗(t)) dt 6 Mηα + ε (TV (vη)− TV (uε)) . (22)

If TV (u∗) is bounded then TV (vη) 6 TV (u∗)+ M̃, whence ε(TV (vη)−TV (uε) 6 ε(TV (u∗)+ M̃)
and we are done.

If TV (u∗) = ∞ then TV (uε) → ∞ as ε → 0. Indeed, if TV (uε) 6 C for every ε > 0 then there
exists a BV function ū such that This implies that

lim
ε→0+

∫ Tε

0
L(t, xε, uε)dt =

∫ Tū

0
L(t, xū, ū)dt.

Hence ū is optimal for the problem with ε = 0 and by uniqueness, ū = u∗. On the other hand, by
lower semicontinuity of TV (·), we have that

TV (u∗) 6 lim inf
ε→0

TV (uε) 6 C,

which is a contradiction.
Notice that the function η 7→ TV (u∗|[0,T ∗−η]) is non-decreasing. Hence for every ε > 0 let η(ε) be

maximal such that TV (u∗|[0,T ∗−η(ε)]) 6 TV (uε).
With this choice of η we have

TV (vη(ε))− TV (uε) = TV (u∗|[0,T ∗−η(ε)]) + TV (wη(ε))− TV (uε) = TV (wη(ε)) 6 M̃.

Thus (22) with µ = η(ε) and taking the maximum between M and M̃ we have (9).

5 Appendix: an existence result

Theorem 4. Consider the optimal control problem

ẋ = f(t, x, u), x(0) ∈ M0, x(tu) ∈ M1 (23)

h1(x(t)) > 0, . . . , hl(x(t)) > 0 ∀ t (24)

u ∈ U = {u : [0, tu] → U measurable, tu > 0} (25)

min
u∈U

(
∫ tu

0
L(s, x(s), u(s)) ds + αTV (u)

)

, (26)

where f : R × R
N × U → R

N is measurable w.r.t. t, locally Lipschitz w.r.t. x, h1, . . . hl ∈ C0(RN ),
L ∈ C0(R × R

N × R
m), U ⊂ R

m is compact, M0,M1 are compact submanifolds, and α > 0. Assume
that
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(i) ∀x ∈ M0 ∪M1, h1(x) > 0, . . . hl(x) > 0;

(ii) there exists ū ∈ U having bounded variation, steering M0 to M1, and such that the corresponding
trajectory satisfies the constraints (24);

(iii) there exists b > 0 such that, for every u ∈ U and every trajectory xu of (23) corresponding to u,
we have

tu + ||xu||∞ 6 b.

Then the optimal control problem (23), (24), (26) admits a solution.

Proof. Let

δ = inf

(
∫ tu

0
L(s, x(s), u(s)) ds + αTV (u)

)

,

where the infimum is taken among all controls u ∈ U steering M0 to M1 and whose corresponding
trajectory satisfies (24). Let un : [0, Tn] → U be a minimizing sequence of admissible controls, i.e.,

lim
n→∞

(
∫ Tn

0
L(s, xn(s), un(s)) ds + αTV (un)

)

= δ,

where xn is a trajectory corresponding to un. Then, thanks to assumption (iii), for n sufficiently large
we have that

αTV (un) 6

∫ tū

0
L(s, xū(s), ū(s)) ds + αTV (ū) + C,

for some constant C > 0, which implies that un is a bounded sequence in BV . Then by a standard
compactness result in BV there exists a subsequence, still denoted by un, and a control uα ∈ U such
that

lim
n→∞

||un − uα||L1 = 0.

Up to a subsequence, let un converge to uα almost everywhere, Tn converge to tα and xn(0) converge
to x0α. We are going to prove that uα : [0, tα] → U is a solution to (23), (24), (26). By [17, Theorem 1
p. 56], the convergence almost everywhere of un to uα implies that if xα satisfies

ẋα = f(t, xα, uα), xα(0) = x0α

then xn converges uniformly to xα. Hence xα satisfies the constraints (24) and, by compactness of M0

and M1, we obtain that xα(tα) ∈ M1. Hence uα is admissible. Moreover,

lim
n→∞

L(t, xn(t), un(t)) = L(t, xα(t), uα(t)), for almost every t.

Hence, thanks to assumption (iii), the dominated convergence theorem allows to conclude that

lim
n→∞

∫ Tn

0
L(t, xn(t), un(t)) dt =

∫ tα

0
L(t, xα(t), uα(t)) dt (27)

On the other hand, by lower semicontinuity of TV (·) we have

TV (uα) 6 lim inf
n→∞

TV (un). (28)

Using (27), (28) and since un is a minimizing sequence, we infer that
∫ tα

0
L(t, xα(t), uα(t)) dt + αTV (uα) 6 δ

which implies that uα is optimal.

In contrast with usual existence results see [7], we do not assume convexity of the dynamics. The
conclusion is assured by the term of the total variation in the cost functional.
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