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Hausdorff measures and dimensions in non equiregular
sub-Riemannian manifolds

R. Ghezzi and F. Jean

Abstract This paper is a starting point towards computing the Hadsdimnension of submanifolds and the Hausdorff
volume of small balls in a sub-Riemannian manifold with silag points. We first consider the case of a strongly
equiregular submanifold, i.e., a smooth submanifdldor which the growth vector of the distributio® and the
growth vector of the intersection of with T N are constant oN. In this case, we generalize the resultin/[12], which
relates the Hausdorff dimension to the growth vector of tis&ridution. We then consider analytic sub-Riemannian
manifolds and, under the assumption that the singular goisttypical, we state a theorem which characterizes the
Hausdorff dimension of the manifold and the finiteness ofifaeisdorff volume of small ballB(p,p) in terms of

the growth vector of both the distribution and the interggrof the distribution with the singular locus, and of the
nonholonomic order gb of the volume form oM evaluated along some families of vector fields.

1 Introduction

The main motivation of this paper arises from the study ofRigmannian manifolds as particular metric spaces. Re-
call that a sub-Riemannian manifold is a trip{®t, 2, g), whereM is a smooth manifold? a Lie-bracket generating
subbundle off M andg a Riemannian metric oy. The absolutely continuous paths which are almost evergavhe
tangent taZ are called horizontal and their length is obtained as in Rieman geometry integrating the norm of their
tangent vectors. The sub-Riemannian distathiedefined as the infimum of length of horizontal paths betwaen
given points.

Hausdorff measures and spherical Hausdorff measures adefined on sub-Riemannian manifolds using the sub-
Riemannian distance. It is well-known that for these metpaces the Hausdorff dimension is strictly greater than the
topological one. Although the presence of an extra streciug., the differential one, constitute a considerablp,he
computing Hausdorff measures and dimensions of sets isieudtifproblem. In [5] we study Hausdorff measures of
continuous curves, whereas in [1] the authors analyze thdasty of the top-dimensional Hausdorff measure in the
equiregular case (see the definition below). In the case ofd@groups, Hausdorff measures of regular hypersurfaces
have been studied inl[4] and in a more general context, ageptation formula for the perimeter measure in terms of
Hausdorff measure has been proved.n [2].

In this paper we consider three questions: given a sub-Risfaa manifold M, Z,g), p € M and a smalp > 0,

1. what is the Hausdorff dimension difiM)? _
2. under which condition is the Hausdorff volumgdm™ (M) (B(p, p)) finite?
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3. the two preceding questions whéh is replaced by a submanifoltd, i.e., what is diny(N) and when is
29 (N) (NN B(p, p)) finite?

A key feature to be taken into account is whetpes regular or singular for the sub-Riemannian manifold.Biv
i > 1, define recursively the submodwe of Vec(M) by 2* = 2, 7' = 9' + (9, 7']. Denote by}, = {X(p) | X €
2'}. SinceZ is Lie-bracket generating, there existp) € N such that

{0} =28c ZLc--.c 7P =ToM.

A point pis regular if, for every, the dimensions dir@(i4 are constant ag varies in a neighborhood gf. Otherwise,

p is said to be singular. A s&C M is equiregular if, for every, dim@c‘1 is constant ag varies inS. For equiregular
manifolds, questions 1 and 2 have been answered In [12] (iltam incorrect proof, seé [13] for a correct one). In
that paper, the author shows that the Hausdorff dimensian equiregular manifol¥ is

r(p) _ _
dimy(M) =Q, where Zli(dim@;)—dim@;;l), 1)

and that the Hausdorf®-dimensional measure near a regular point is absolutelyiraoous with respect to any
Lebesgue measure d. As a consequence, whegnis regular, the Hausdorff dimension of a small (b, p) is
Q, and the Hausdorf-dimensional measure &(p, p) is finite.

When there are singular points, these problems have beetiomedh in [8, Section 1.3.A]. In this case, the idea
is to compute the Hausdorff dimension using suitable $izations ofM where the discontinuities of the dimensions
g—dim @é are somehow controlled. Namely, as suggested in [8], weidenstratifications made by submanifolds

which arestrongly equiregulayi.e., for which both the dimensions d'@;l4 and din{@émTqN) are constant agvaries
in N.

The first part of the paper provides an answer to question 31Wie strongly equiregular. The first result of the pa-
per (Theorerhll) computes the Hausdorff dimension of a sty@wgliregular submanifold in terms of the dimensions
of dim(@ci4 NTyN), generalizing formuld{1) which corresponds to the ddse M. More precisely, dim(N) = Qn
where

r(p) , .

Qn = Zi(dim(.@'pmpr\l) —dim(Zy *NTpN)).

i=
This actually follows from a stronger property: indeed, Wwew that theQn-dimensional spherical Hausdorff measure
in N is absolutely continuous with respect to any smooth mea@ureany measure induced locally by a volume
form) onN. The Radon—Nikodym derivative computed in Theofém 1 geizesa[1, Lemma 32], which corresponds
to the caseN = M. The main ingredient behind the proofs of such results idahethat for a strongly equiregular
submanifoldN the metric tangent cone tN,d|y) exists at everyp € N and can be identified td,N via suitable
systems of privileged coordinates (see Lemina 1).

The results for strongly equiregular submanifolds prowdiest step towards the answer of questions 1 and 2 in the
general case, at least for analytic sub-Riemannian malsifdlis is the topic in the second part of the paper. Indeed,
when(M, 2,g) is analytic,M can be stratified algl = Uj>oM; where eachM; is an analytic equiregular submanifold.
Then, the Hausdorff dimension of a small bBlis the maximum of the Hausdorff dimensions of the intersecti
BN M;. To compute the latter ones, we use that each siatzan further be decomposed as the disjointed union of
strongly equiregular analytic submanifolds. In Lenitha 3yg§ heorenill we compute the Hausdorff dimension of an
equiregular (but possibly not strongly equiregular) atialsubmanifold and we estimate the density of the corredpon
ing Hausdorff measure. Characterizing the finiteness ottine=sponding Hausdorff measure of the intersection of a
small ball with an equiregular analytic submanifold is etimvolved. Yet this is the main issue in question 2, as when-
ever the Hausdorff measureB(p, p) N {regular point} is infinite at a singular poinp then so is7#4m M)(B(p, p)).

To estimatesz79™ (M) (B(p, p) N {regular point}), we assume that the singular pojnis “typical”, that is, it belongs
to a strongly equiregular submanifditlof the singular set. In Theorelnh 2 we characterize the finieoéthe afore-
mentioned measure at typical singular points through aeba#ic relation involving the Hausdorff dimensiQpeg



near a regular point, the Hausdorff dimens@q of N, and the nonholonomic order ptof the volume form orivi
evaluated along some families of vector fields, given by lrackets between generators of the distribution.

The proof of Theorerml2 (and of Propositign 1) will appear imdHcoming paper.

The structure of the paper is the following. In Seciidn 2 weateshortly the definitions of Hausdorff measures
and dimension and some basic notions in sub-Riemannianetepr8ectiol B is devoted to the the definition and the
study of strongly equiregular submanifolds and contaiesgtivof of Theorefll and the statement of Proposfiion 1. In
Sectiorl 4 we treat analytic sub-Riemannian manifoldst,Rive estimate the Hausdorff dimensiQy of an analytic
equiregular submanifol in Sectiof 4.]L. Then, in Sectidn #.2, we prove that@redimensional Hausdorff measure
of the intersection of a small baB(p,p) with N is finite if p € N and we state Theorefd 2. Finally, we end by
applying our results to some examples of sub-Riemanniarnfaidain Sectioi 4.8. In particular, the examples show
that when the Hausdorff dimension of a ball centered at autamgpoint is equal to the Hausdorff dimension of the
whole manifold, the corresponding Hausdorff measure cdmbiefinite or infinite.

2 Basic notations

2.1 Hausdorff measures

Let (M,d) be a metric space. We denote by didthe diameter of a s C M, by B(p, p) the open bal{g e M |
d(qg, p) < p}, and byB(p, p) the closure oB(p, p). Leta > 0 be areal number. For every $et M, thea-dimensional
Hausdorff measure?’® of Ais defined as#’? (A) = lim_,o+ 4% (A), where

[ee]

Z(diamS)“ :AcC | JS, S closed setdiam§ < e},

SO (A) = inf{
1= i=1

and thea-dimensional spherical Hausdorff measiselefined as”? (A) = lim,_,o+ /& (A), where

[ee]

_Zl(diamS)"’ :Ac|JS. Sisaball diams < e}.

SA(A) = inf{
1= i=1

For every seA C M, the non-negative number
D=sup{a >0| #%(A) =} =inf{a >0]| #%A) =0}

is called theHausdorff dimension of A'heD-dimensional Hausdorff measus&® (A) is called the Hausdorff volume
of A. Notice that this volume may be 8,0, or .

Given a subsel C M, we can consider the metric spa@¢, d|n). Denoting by.7 and.#{ the Hausdorff and
spherical Hausdorff measures in this space, by definitiohave

%GLN(A) = %G(Aﬂ N) = %G(Aﬂ N),
FUN(A) == ZYANN) < F3(ANN). @)

These are a simple consequences of the fact that@ setlosed inN if and only if C = C' NN, with C’ closed in
M. Notice that the inequality [2) is strict in general, as ¢owgs in the definition of#{ are made with set8 which
satisfyB = B(p, p) "N with p € N, whereas coverings in the definition.6f?_y include sets of the typB(p,p) "N
with p ¢ N. Moreover, by construction of Hausdorff measures, forggabseSC N, s79(S) < #9(S) < 29.79(S)
andJ4f (S) < AJ(S) <294 (S). Hence

H(S) < A(S) <29°(S),



and.7\ is absolutely continuous with respect4?. .

2.2 Sub-Riemannian manifolds

A sub-Riemannian manifold of clag& (k = « or k = w in the analytic case) is a tripléM, Z,g), whereM is a
¢*-manifold, Z is a Lie-bracket generatirigk-subbundle off M of rankm < dimM andg is a Riemannian metric of
class¢® on 2. Using the Riemannian metric, the length of horizontal esrv.e., absolutely continuous curves which
are almost everywhere tangent4y is well-defined. The Lie-bracket generating assumptigglies that the distance
d defined as the infimum of length of horizontal curves betwaangiven points is finite and continuous (Rashewski—
Chow Theorem). We refer ihas thesub-Riemannian distanc&he seM endowed with the sub-Riemannian distance
d is a metric spacéM, d) (often calledCarnot-Caratteodory spacewhich has the same topology than the manifold
M.

We denote byZy C TqM the fiber ofZ overq. The subbundl&Z can be identified with the module of sections

{X e VecM) | X(q) € Z4,Yq € M}.
Giveni > 1, define recursively the submodui of Vec(M) by
=9, M =9'+(2,9.

SetZ}, = {X(q) | X € Z'}. Notice that the identification between the submodaleand the distributiory — 7, is

no more meaningful when the dimension.@g varies as a function af (see the discussion inl[3, page 48]). The
Lie-bracket generating assumption implies that for eepeyM there exists an integefq), thenon-holonomy degree
at g, such that

{0)cZtc--c 7Y =Tym. ©)
The sequence of subspadés (3) is calledldweof 2 at g. Setn;(q) = dim .@}4 and

r(a

Qq) = Zi(ni (@) — ni—a(a)), (4)

whereng(qg) = 0.

We say that a poinp is regular if, for everyi, nj(q) is constant af varies in a neighborhood gf. Otherwise, the
point is said to besingular. A subsetA C M is calledequiregularif, for everyi, nj(q) is constant as| varies inA.
When the whole manifold is equiregular, the inte@€q) defined in[(#) does not depend grand it is the Hausdorff
dimension of(M,d) (see [12]).

Givenp e M, let Xy, ..., Xn be a local orthonormal frame &f. A multiindex| of length|l| = j > 1 is an element
of {1,...,m}J. With any multiindexi = (i1,...,ij) is associated an iterated Lie bracket= [Xi, , [Xi,, .- X ] (we
setX; =X, if j =1). The set of vector fieldX; such thafl| < j is a family of generators of the modue!. As a

consequence, if the valuesXf, ..., X, atq € M are linearly independent, théh [1;| > Q(q).
LetY be a vector field. We define thength of Yby

(Y)=min{ieN|Y e 2'}.

In particular,f(X) < |l|. Note that, in general, if a vector fie¥satisfiesr (q) € @(i] for everyqe M, Y need not be in
the submodule?'. By anadapted basiso the flag[(B) atj, we meam vector fieldsy;, ..., Y, such that their values at
g satisfy .

Dq=spar(Yj(q) | £(Yj) <i}, Vi=1,...,r(q).



In particular,3"_; ¢(Y;) = Q(q). As a consequence, a family of bracks, ..., X, such thatx, (q),...,X,(q) are
linearly independent is an adapted basis to the flag (§)fand only if 3 |Ii| = Q(q).

3 Hausdorff dimensions and volumes of strongly equiregulasubmanifolds
In this section, we answer question 3 whkiis a particular kind of submanifold, namely a strongly eqgirlar one.
These results include the case whir@self is equiregular.

3.1 Strongly equiregular submanifolds

LetN C M be a smooth connected submanifold of dimensiofheflag at ge N of Z restricted to Nis the sequence
of subspaces

{0} C (ZENTGN) € - € (Z4Y N TgN) = ToN. (5)
Set

_{
Q

. (a)
n'(g) =dim(ZgNTN)  and  Qu(a) = 3 i(n\(a) —nf4()),

=
with n} (q) = 0.
Definition 1. We say thai is strongly equiregulaif

(i) Nis equiregular, that is, for eveiythe dimensiom;(q) is constant ag varies inN.
(i) for everyi, the dimensionni’\‘(q) is constant ag varies inN.

In this case, we denote I§jy the constant value d@n(q), g € N.

By anadapted basito the flag[(b) atj € N, we mearb vector fieldsZ,, . .., Z, such taht
ZyNTN = spar(Zj(q) | £(Zj) <i}, Vi=1,...r(q).
In particular, wher¥s, ..., Z, is adapted to the flag(5), we haVgN = sparf{Z,(q),...,Zy(q)} andQn = S0 UZ).

Recall that the metric tangent cdhte (M, d) at any pointp exists and it is isometric t()TpM7dAp), wheredAp denotes
the sub-Riemannian distance associated with a nilpotgmbajmation atp (see[[3]). The following lemma shows the
relevance of strongly equiregular submanifolds as pdaicubsets o for which a metric tangent cone exists. Such
metric space is isometrically embedded in a metric tangeme ¢o the wholé at the point.

Lemma 1.Let NC M be a b-dimensional submanifold of M. Assume N is stronglyregular. Then, for every g N:

(i) there exists a metric tangent cone(td,d|y) at p and it is isometric tcéTpN,dAphpN);
(i) the graded vector space

otN(2) = &2, NTN) /(251N TpN)

is a nilpotent Lie algebra whose associated Lie gr@rﬁ(@) is diffeomorphic to §N;
(iii ) every b-formw € APN on N induces canonically a left-invariant b-fordP on Gr”;‘(@). Moreover,

/ w=geN / QP +0(eM), (6)
NNB(p,e) ToNNBp

Lin Gromov’s sense, seel[7]



where ¢e) is uniform as p varies in N an@p is the ball centered d of radius1 in the nilpotent approximation
at p of the sub-Riemannian manifold.

Remark 1WhenN is an open submanifold d¥l, assumingN strongly equiregular is equivalent to saying tiat
contains only regular points. In that case, Lenitha 1 is wedivikn (point (i) follows by the fact that the nilpotent
approximation is a metric tangent cone, point (i) says thattangent cone shares a group structure - which in this
case satisfies the additional propegty(%7) = spag{@l} and (iii) has been remarked inl[1] using the canonical
isomorphism between"(grp(2)*) and A" (T M).

Proof. Note first that since the result is of local nature, it is sigfit that we prove it on a small neighbourhood
B(po,p) NN of a pointpg € N. For everyp in a such a neighbourhood, there exists a coordinate sygtetd, — R"
on a neighborhood, C M of p, such thatp,, are privileged coordinates gf p+— ¢p is continuous, andil is rectified
in coordinatespy, that ispp(NNUp) C {x€ R" | Xp;1 = --- = Xy = 0}. The construction is as follows.

Givenp > 0 small enough, we can fifwlvector fieldsy, ..., Y, defined orB(po, p) which form a basis adapted to
the flag [b) restricted tt at everyp € B(po, p) " N. Moreover, up to reducing, we can findy, 1,...,Ys such that
Yi,...,Yq is adapted to the flagl(3) of the distribution at every pairt B(po, o) NN. Using these bases, we define for
p € NNB(po,p), alocal diffeomorphisn®,, : R" — M by

n b
Pp(X) =e><p< g xm) oeXP(Zin) (p)- )
i=b+1 1=

The inversep, = cpgl of @, provides a system of coordinates centeredahich are privileged (see[[9]). Moreover,
thanks to property (i) in Definitiohl1, the map froB{po,p) NN to M which associates witfp the point®p(x) is
smooth for everyx € R". Finally, in coordinateg,, the submanifoldN U coincides with the set

b
{exr)(;w)(D)I(Xl,-..,xb)eﬂ} {@p(X) | Xp11 ="+ =% =0},

whereQ is an open subset @&®.
Using ¢, we identify M with ToM ~ R". SinceY1(p),...,Yo(Pp) spanTpN, ¢p mapsN in TpN, whereT,N is
identified withRP x {0} C R" ~ TyM. Therefore, whenevep, g, € U NN we have

dp (01, 02) = dp|TyN (1, 02),

and obviouslyd(qg;,g2) = d|n(d1,02). Hence estimate (70) ia][3, Theorem 7.32] holds when weicestto N andd
to TgN. This allows to conclude that a metric tangent con@Nad|y ) at p exists and it is isometric t()TpN,dAp|TpN),
where the inclusion of ;N into ToM is to be intended vigy.

The algebraic structure Cﬁt%‘(@) and the fact thaGr'g‘(@) is diffeomorphic toRP are straightforward. As a
consequence, there also exists a canonical isomorphismbey\b(gt'g‘(@)*) and /\b(T;;N). Let @, be the image
of wp under such isomorphism (see the construction in [13, Sedid5]). ThenwP is defined as the left-invariant
b-form onTpN which coincides withi, at the origin.

Finally, as a consequence of point (i), by definition of netaingent conqbp( (p,€) NN) converges tcﬁ(o &N
TpN in the Gromov-Hausdorff sense agoes to 0. By homogeneity ok, we haveB(0,&) N TN = eV (B, N T,N)
and we get((6). Sincp— ¢p andp — Bp are continuous |1, Section 4.1], the remainoi@®V) in (&) is uniform with
respect ta. O

For the sake of completeness, let us give an explicit forrfarl&P. Recall that the construction of the coordinates
¢p involves an adapted basis, ..., Yy to the flag[(b) restricted thl at everyp € B(po, p) NN. In particular the vector
fieldsYi,..., Y, restricted taN form a local frame for the tangent bundleNcand

= w(Yl, e ,Yb)d(Y1|N) VAREE /\d(Yb|N).



LetXy,...,Xm be alocal orthonormal frame for the sub-Riemannian stregtua neighborhood g, andX, , ..., X,
be an adapted basis to the flag (3)mtwhereX;; is the Lie bracket corresponding to the multi-indigx Since
Xi,,..., X, is alocal frame for the tangent bundleNp for everyi =1,...,b we can writeY; in this basis as

Y= 5 ¥,
H<e(v)

whereY/ are smooth function (the fact that only multiindices withdénh smaller thari(Y;) appear in this sum is due to
the definition of length of a vector field). Denote ﬁﬁ ..., XBthe nilpotent approximation ofy, . .., Xy, at p obtained
in coordinatespp, and by)A(,’j3 the Lie bracket between th@f, ..., Xh corresponding to the multiinddyx. For every

i =1,...,bwe define the vector field

This enables us to compufg® as
P = wp(Ya(p),. .., Yo (P)A(YPLIrn) A AP on).- (8)

The fact that the right-hand side &fl (8) does not depend orXtheor on they; is a consequence of the intrinsic
definition of &P.

3.2 Hausdorff volume

Assume now thaN is an orientable submanifold. Bysmooth volumen N we mean a measuye associated with
a never vanishing smooth form € APN, i.e., for every Borel seA C N, u(A) = [, w. We will denote byfiP the
smooth volume offyN associated witP.

We are now in a position to prove the main result.

Theorem 1.Let NC M be a smooth orientable submanifold. Assume N is strongliyemular. Then, for every smooth
volumeu on N,

iam~ B.\Q
i yﬁf“(B(q,e)) B dlarrhq(TqNﬂBq) N

= — , VqQEN, 9
S uNAB(Ge) | f(TNNBy O ®)

WherediamdAq denotes the diameter with respect to the distaﬁpén particular, Y,\?N is absolutely continuous with
respect tou with Radon—Nikodym derivative equal to the right hand siti@p As a consequence,

dimy N = Qu, (10)

and, for a small ball Bp, p) centered at a point g N, the Hausdorff volumgZ (NN B(p, p)) is finite.

Remark 2WhenN is an open submanifold d#l, e.g.,N = {p € M | pis regula}, the computation of Hausdorff
dimension is well-known, seé [112]. In particular, whpris a regular point the top-dimensional Hausdorff measure
AR(B(p,r)) is positive and finite. WheN = M, equation[() gives a new proof {d [1, Theorem 1]. This isriesting
since the latter was obtained as a consequence of [1, Lemnal3®se proof is incorrect.

To prove Theoremll a fundamental step is the following lemma.

Lemma 2.Let N andu be as in Theoref 1. Let N. Assume there exists positive constagtand i, > u_ such
that, for everye < & and every point & B(p, &) NN, there holds

u_ diam(B(q, ) NN) < p(B(g,£) NN) < 1, diam(B(g, £) IN) . (11)

Then, for eveng < &,



H(B(p,e)NN) o p(B(p,e)NN)
. SWNBRE) s/

Proof. LetJ; B(qi,ri) be a covering oB(p, &) "N with balls of radius smaller thad < &. If d is small enough, every
i belongs tdB(p, &) NN and, using[(1I1), there holds

H(B(p,e)NN) < S u(B(gi,ri) NN) < py Y diam(B(qj, i) NN)N.

Hence, we have”, 2 (B(p, )) > W.
For the other inequality, lefy > 0, 0< & < & and let{J; B(q;,r;) be a covering oB(p,&) NN such thatg; €
B(p,e)NN 1y < d andy; u(B(qi,ri) NN) < u(B(p,&)) +n. Such a covering exists due to the Vitali covering lemma.

Using as abové (11), we obtain

H(B(p.e) AIN)+1 > 5 u(B(gi,ri)NN) > p- Zdia”‘(B(Qi,fi)ﬁN)QN-

We then have?ﬁ,\?'g(B(p, £)) < w + ;7_, Lettingn andd tend to 0, we get the conclusion. O

Proof of Theorem]1Fix g € N. By point (i) in Lemmaﬂ(TqN,@|TqN) is a metric tangent cone tiN,d|y) at q,
whence, from the definition of Gromov—Hausdorff convergewe get

im diam(NNB(q,€))

Lo . = d|amqu(TqN NBy). (12)
By (@) in Lemmd_1, for everg € N there holds
U(NNB(q,€)) = eNAY(TGNNBg) + 0(e™N). (13)

SinceN is strongly equiregular, the limits i (IL2) arid [13) holdfoninly asq varies inN.
Moreover, adapting the argument in [1, Section 4.1], we dedhat the mayp— [19(Bq N TgN) is continuous on
N. As a consequence, for anfy> 0 there existg; > 0 such that for every € B(p, 1) and everye < & we have

H(NNB(g,€))
K= GamNNB(g, ) = M

with R N
Hq(TgN N Bg)

+ = =
iam:- Q
d|am%jq (TyN N Bg)N

Therefore, applying Lemnid 2 and lettingtend to 0 we deducé](9).
To show [20), notice that the right-hand side[df (9) is camims and positive as a function@fHence, fory,\?'“—
almost eveny € N there existp > 0 small enough such that

0< SN(INNB(p,p)) < . (14)
This is equivalent td(10). O

We end this section by stating a result which gives a weakvatgrit of the functiori9(TyN N I§q) appearing in
Theorent L. This will be useful in the following to determinbather the Hausdorff volume of a small ball is finite or
not. This result stems from the uniform Ball-Box Theoren@][&nd [11, Th. 4.7].

Proposition 1. Let M be orientable ando be a volume form on M. Let N be an orientable submanifold of M of
dimension b, and led be a volume form on N, with associated smooth volpum&ssume N is strongly equiregular



and set QN] equal to the constant value of(@, for g € N. Then there exists a constantC0 such that, for every
geN,

1. _ o R _
clas AY(TGNNBg) <Cvq (i.e. A%(TgN N Bg) < vg uniformly w.r.t. g,

wherevg =max{ (WA dX, , A+ A dX.n)q (X1, (a),...,X,(a))}, the maximum being taken among all n-tugés, ..., X,)

in argmax @y (X, (a), ... X, (@) | Zi [I{| = Q[N]}.
In particular, iFN is an open equiregular subset of M, i.e~m, and if u is the smooth measure on M associated
with w, we have

[1°(Bq) = max{@y(Xy,--,Xy) | 3 [1{|=QM]},  uniformly w.rt. ge M.
1

This proposition, together with Theorér 1, allows to giveeatimate of the Hausdorff volume of a subseNoff

SC N, then

171 1
— | = < PN <C | =
o qudu_jf (9 <C /qudu, (15)

where the constai@ > 0 does not depend @

4 Hausdorff dimensions and volumes of analytic sub-Riemarian manifolds

Let (M, 2,9) be an analytic@®) sub-Riemannian manifold. The sEtof singular points is an analytic subsetMf
which admits a Whitney stratificatiab = [ ;-1 M; by analytic and equiregular submanifolds(see for instancé [6]).
DenotingMg = M \ X the set of regular points, we obtain a Whitney stratificafibr= |J;-oM; of M by analytic
and equiregular submanifolds. Note thdg is an open and dense subsethdf but it may be disconnected. As a
consequence, the Hausdorff dimensioivbis

dimy (M) = maxdimy (M;),
i>0

and thea-dimensional Hausdorff measure of a lB(p,p), p€ M andp > 0, is

A7 (B(p,p)) = Y 7 (B(p,p) N Mi).

4.1 Hausdorff dimension

The first problem is then to determine the Hausdorff dimemsican equiregular - possibly not strongly equiregular -
submanifold.

Lemma 3. Let N be an analytic and equiregular submanifold of M. Qgt= maxen Qn(q). Then
dimH (N) = GNa

and Qu(q) = Qy on an open and dense subset of N.

If moreover N is orientable, then for every smooth meaguon N,y,\?’“ is absolutely continuous with respect to
u with Radon—Nikodym derivative

On (diamy (TqN N Bqg))
it (a) = qu M , for y-a.e. ge N. (16)
du Ha(TgN N Bg)




Proof. SinceN is analytic and equiregular, it admits a stratificatdr= |J; N; by strongly equiregular submanifolds
N; of N. By Theoreni L, dim(N;) = Qn, and thus dim (N) = max Qy;. In particular, ding (N) < maxgen Qn(0).
Now, recall thaQn(q) = 3N, i(nN(q) —nN , (), wherery :=r(q) is constant sinchl is equiregular, and{\‘N (q) =

dimN. This may be rewritten as
rn—1

Qn(g) = Z} codim(Z4NTgN), (17)

where codin@.@é NTgN) = nP‘N (q) —nN(q) is the codimension ()@(i4 NTgN in TgN. The submanifoldN being equireg-
ular,Qn(q) is a lower semi-continuous function dhwith integer values. Hend®y (q) takes its maximal valu@y
on the stratd\; which are open itN, and smaller values on non open strata. SiRg€qd) = Qn(q) whenN; is an open
subset oN andQy; (q) < Qn(d) whenN; is a non open subset df, the first part of the lemma follows.

As for the second part, notice that every non open stratluns of u-measure zero, sindg; is a subset oN

of positive codimension, and Qﬁfﬂ,\?N-measure zero, since diniN;) = Qn, < Q. A first consequence is that is

strongly equiregular near-a.e. pointy. Therefore the measufg on TyN is definedu-a.e. — and so is the right-hand
side of [16). Applying then Theorelnh 1 to every open straNinwe get the conclusion. O

Corollary 1. dimy(M) = max{Qw;(q) : i >0, ge Mi} =max{Qy, : i >0}.

4.2 Finiteness of the Hausdorff volume of balls

Let pe M andp > 0 (p is assumed to be arbitrarily small). The aim of this sect®mtoi determine under which
conditions the small baB(p, p) has a finite Hausdorff volumedm+ (B(P.))(B(p, p)). We make first two preliminary
remarks.

e If pis aregular point, then there exists a neighbourhoog iof M which is strongly equiregular, and Theoreim 1
implies thats74m+ (B(P.P))(B(p, p)) is finite. We then assume in the following thats a singular point.

e The results of this section are local. Up to reducing to ameagirhood ofp, we can assume thst is an oriented
manifold with volume forno.

Recall that, by definition, the stratificatidl = |J;~oM; is locally finite. That is, there exists a finite set of
indices such thap € M; if and only if i € .#, whereM; denotes the closure of the stratuvh. Therefore, forp
small enough, the baB(p, p) admits a finite stratificatioB(p,p) = Ujc.»(B(p,p) "M;). Applying Corollanyf1, the
Hausdorff dimensioi®, of B(p, p) is

Dp=maxQw(q) : i€, ge M}.
Let # C .# be the subset of indicésuch that dim (M;) = Dy. We have

AP (B(p.p)) =3 A°(B(p,p)NM).
ic /

Proposition 2. Let N be an analytic and equiregular submanifold ofdéiny (N) = Q. If p € N and ifp > Ois small
enough, then the Hausdorff volum&n (B(p, p) NN) is finite.

Proof. Up to replacingN with a small neighbourhood gf in N, we assume that is orientable. We then choose a
smooth measurg on N and we have, fop small enoughy(B(p,p) "N) < +c. From LemmaB,

(diam, (TqN N Bg))

AN (B(p,p)NN) =/ du.

Bpo)N  Hg(TqNNBq)
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The submanifoldN is strongly equiregular near-a.e.q € N. We can then apply Propositibh 1 ngaa.e.q € N and
we get

iam- B.))Q
(dlan’hq (TyNNBg))™N

Y,?“(B(p,pmN)SC/

du.
B(p,o)NN Vq

The functiong — vq is positive and continuous dW, so the integrand function in the previous formula is finitel a
continuous orN, and we have?’,\?N(B(p,p) NN) < Cstu(B(p,p) NN) < +w. Sinces#N is absolutely continuous

with respect to?,\?N, the conclusion follows. O

As a consequence, the Hausdorff volum#€Pr (B(p, p)) is finite if and only if 7#P¢(B(p, p) N M) is finite for
every stratumM; such that dim (M;) = Dy andp € dM;. To go further, we will assume thatis atypical singular
point, that is, thap satisfies the following assumptions fersmall enough:

(Al) pbelongs to a strongly equiregular submanifdldf M, N C X, andB(p,p) N % C N;
(A2) foreveryqe NNB(p,p), there exists a family, ..., X, such thaty; [l;| = Qregand orgw(X,,, ..., X,) =0,
whereQyeg is the constant value @(q) forqe M\ X, and

oc=maxq{seN : ge NNB(p,p) and z [li| = Qregimply ordqw (X, , ..., X,) > s}.
|

Let us recall the definition of ogd(see [3] for details). Giveri € €*(M), we say thatf hasnon-holonomic order
at p greater than or equal to, &nd we write orgf > sif forevery j <s—1

(Xiy .- X, F)(P) =0 ¥ (i1,....i;) € {1,...,m},

whereX; f denotes the Lie derivative df alongX;. Equivalently,f(q) = O(d(p,q)®). If moreover we do not have
ordpf > s+ 1, then we say that hasnon-holonomic order at p equal to and we write orgf =s.

Theorem 2. Assume p satisfies (A1) and (A2). Lef ke the constant value ofq) for g € N, and fy be the maximal
integer i such thatifp) — ni—1(p) > nN(p) —nN ;(p). Then

A9(B(p,p)\I) <o & 0<Q(p)—Qu—ry.
As a consequence,

e if Qreg < Qn, then D, = Qu and #Pr (B(p, p)) is finite;
o if Qreg> Qn, then Dy = Qreg and%Dp(B(p,p)) is finite if and only ifo < Q(p) — Qn — I'n.

The proof of this theorem is postponed to a forthcoming pdpeslies on the use of Propositibh 1.

Remark 3Assumption (A2) is actually not necessary for the compatesti If p satisfies only (Al), we introduce two
integerso_ < oy :

o =min{seN : Vge NNB(p,p), IXi,,..., X, S.t. Ti|li| = Qreg and ord@(X,, ..., X,) < s},
o_ =max{se N : Jan open subs&? of NNB(p,p) s.t.q€ Q and 5; |li| = Qregimply ordqw(X, ,...,X,) > s}.

Assumption (A2) is equivalentta_ = g, = g. The generalization of the criterion of Theorem 2 to the calserep
satisfies only (A1) is then:

o if 0, <Q(p) — Qn—ry, thens#es(B(p,p) \ £) < o;
e if 0 >Q(p)— Qu-ry, then#%s(B(p,p) \ T) = e.

Notice that the ordeo (ando_ if p does not satisfies (A2)) always satisfies> Q(p) — Qreg. We thus obtain a
simpler criterion for the non finiteness of the Hausdorffurok of a ball.

Corollary 2. Assume p satisfies (A1).0fK Qreg— Qn < I'y, then.#Pr(B(p,p)) = oo.
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4.3 Examples
Example 1 (the Martinet spacegonsider the sub-Riemannian manifold giverMby= R3, 2 = spar{ Xy, Xz},
X2
X1=01, Xpo=02+ 5153,

and the metri(dxf + dx%. We chooseu = dx; A dx A dxs, that is, the canonical volume form @&?.

The growth vector is equal t®, 2, 3) on the plandN = {x; = 0}, and it is(2, 3) elsewhere. As a consequenks
the set of singular points. At a regular poifeq = 4. Every singular poinp = (0,x,x3) satisfies (A1) and we have
Q(p) =5,Qn =4, andry = 1. Applying Corollarie§ 1l and 2, we obtain:

dimy(M)=4, and 7%B(p,p)) <« if pregular, 7#*B(p,p)) =« otherwise.

Thus small balls centered at singular points have infiniteddarff volume. This result can also be obtained by a direct
computation based on the uniform Ball-Box Theorem, se& [11]

Note that the only familyX,, X,,X|;) such thaty; [li| = Qreg is (X1, X2, [X1, X2]). The volume form of this family
equalsx; and it is of order 1 at every point ™. Thus every singular point satisfies assumptions (A1) art) (fith

0 =1(0=Q(p) - Qreghere).

Example 2 Consider the sub-Riemannian manifold givenNby= R4, 2 = spar{Xy, X2, X3}, where
X2 X5
X1 = 01, X2:32+7104, X3:03+7234,

andg = dxZ + dx3 + dx§. We choosew as the canonical volume form d&f.

At a regular pointQreg = 5. The set of singular points ¥ = {x; = X, = 0}. Every singular point satisfies (A1)
and we hav&(p) = 6, Qy =4, andry = 1. Thus, by Corollari]1, diga(M) = 5. However Corollar{2 does not allow
to conclude on the finiteness of the Hausdorff volume.

The only families such thg; |li| = Qregare(Xy, Xo, X3, [X1, X2]) and(Xy, X2, Xz, [X2, X3]). The volume form applied
to these families is equal ta andx, respectively, and both of them are of order 1 at every poit.ofhus every
singular point satisfies assumptions (A1) and (A2) with= 1 (0 = Q(p) — Qreg here). Applying Theoreril 2, we
obtain:

dimy(M) =5, and #°(B(p,p)) < foranype M.

Example 3LetM = RS, 2 = spar{ Xy, Xz, X3},
X1=01, Xo=0r+X103+ X%05, X3 = 04+x‘{05,

with k > 2, andg = dx§ + dx3 + dx3. We choosew as the canonical volume form G?.

The singular set il = {x; = 0}. A simple computation shows that every singular pgisatisfies (A1) and (A2),
andQreg=7,Q(p) =8,Qn =7, ry =1, ando = k— 1. Thus in this example > Q(p) — Qreg. Now Corollaries 1L
and2 apply and we obtain

dimy(M)=7, and #'(B(p,p)) < if pregular, .7#'(B(p,p)) =« otherwise.
Example 4LetM = R®, 2 = spar{Xy, X2, X3},
Xp =01, Xo=0o+%103+X05, Xg=0da+ (X+X)ds,
with k > 2, andg = dx2 + dxg + dx3. We choosew as the canonical volume form @.

The singular set itN = {x; = xo = 0}. Every singular poinp satisfies (A1) and (A2) and we ha@eg = 7,
Q(0) =8,Qn =6,ry =1, ando = k— 1. By Corollary1 and Theorefi 2, we obtain

12



dimyM)=7, and #'(B(p,p)) <= if pregular, #'(B(p,p)) = otherwise.

Note that in this case we do not ha@gg— Qn < ry. This shows that the criterion in Corolldry 2 does not previd
necessary condition for the Hausdorff volume to be infinite.
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