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Hausdorff measures and dimensions in non equiregular
sub-Riemannian manifolds

R. Ghezzi and F. Jean

Abstract This paper is a starting point towards computing the Hausdorff dimension of submanifolds and the Hausdorff
volume of small balls in a sub-Riemannian manifold with singular points. We first consider the case of a strongly
equiregular submanifold, i.e., a smooth submanifoldN for which the growth vector of the distributionD and the
growth vector of the intersection ofD with TN are constant onN. In this case, we generalize the result in [12], which
relates the Hausdorff dimension to the growth vector of the distribution. We then consider analytic sub-Riemannian
manifolds and, under the assumption that the singular pointp is typical, we state a theorem which characterizes the
Hausdorff dimension of the manifold and the finiteness of theHausdorff volume of small ballsB(p,ρ) in terms of
the growth vector of both the distribution and the intersection of the distribution with the singular locus, and of the
nonholonomic order atp of the volume form onM evaluated along some families of vector fields.

1 Introduction

The main motivation of this paper arises from the study of sub-Riemannian manifolds as particular metric spaces. Re-
call that a sub-Riemannian manifold is a triplet(M,D ,g), whereM is a smooth manifold,D a Lie-bracket generating
subbundle ofTM andg a Riemannian metric onD . The absolutely continuous paths which are almost everywhere
tangent toD are called horizontal and their length is obtained as in Riemannian geometry integrating the norm of their
tangent vectors. The sub-Riemannian distanced is defined as the infimum of length of horizontal paths betweentwo
given points.

Hausdorff measures and spherical Hausdorff measures can bedefined on sub-Riemannian manifolds using the sub-
Riemannian distance. It is well-known that for these metricspaces the Hausdorff dimension is strictly greater than the
topological one. Although the presence of an extra structure, i.e., the differential one, constitute a considerable help,
computing Hausdorff measures and dimensions of sets is a difficult problem. In [5] we study Hausdorff measures of
continuous curves, whereas in [1] the authors analyze the regularity of the top-dimensional Hausdorff measure in the
equiregular case (see the definition below). In the case of Carnot groups, Hausdorff measures of regular hypersurfaces
have been studied in [4] and in a more general context, a representation formula for the perimeter measure in terms of
Hausdorff measure has been proved in [2].

In this paper we consider three questions: given a sub-Riemannian manifold(M,D ,g), p∈ M and a smallρ > 0,

1. what is the Hausdorff dimension dimH(M)?
2. under which condition is the Hausdorff volumeH dimH(M)(B(p,ρ)) finite?
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3. the two preceding questions whenM is replaced by a submanifoldN, i.e., what is dimH(N) and when is
H dimH (N)(N∩B(p,ρ)) finite?

A key feature to be taken into account is whetherp is regular or singular for the sub-Riemannian manifold. Given
i ≥ 1, define recursively the submoduleD i of Vec(M) by D1 =D , D i+1 =D i +[D ,D i ]. Denote byD i

p = {X(p) | X ∈

D i}. SinceD is Lie-bracket generating, there existsr(p) ∈ N such that

{0}= D0
p ⊂ D1

p ⊂ ·· · ⊂ D
r(p)
p = TpM.

A point p is regular if, for everyi, the dimensions dimD i
q are constant asq varies in a neighborhood ofp. Otherwise,

p is said to be singular. A setS⊂ M is equiregular if, for everyi, dimD i
q is constant asq varies inS. For equiregular

manifolds, questions 1 and 2 have been answered in [12] (but with an incorrect proof, see [13] for a correct one). In
that paper, the author shows that the Hausdorff dimension ofan equiregular manifoldM is

dimH(M) = Q, where
r(p)

∑
i=1

i(dimD i
p−dimD i−1

p ), (1)

and that the HausdorffQ-dimensional measure near a regular point is absolutely continuous with respect to any
Lebesgue measure onM. As a consequence, whenp is regular, the Hausdorff dimension of a small ballB(p,ρ) is
Q, and the HausdorffQ-dimensional measure ofB(p,ρ) is finite.

When there are singular points, these problems have been mentioned in [8, Section 1.3.A]. In this case, the idea
is to compute the Hausdorff dimension using suitable stratifications ofM where the discontinuities of the dimensions
q 7→ dimD i

q are somehow controlled. Namely, as suggested in [8], we consider stratifications made by submanifoldsN
which arestrongly equiregular, i.e., for which both the dimensions dimD i

q and dim(D i
q∩TqN) are constant asq varies

in N.
The first part of the paper provides an answer to question 3 when N is strongly equiregular. The first result of the pa-

per (Theorem 1) computes the Hausdorff dimension of a strongly equiregular submanifoldN in terms of the dimensions
of dim(D i

q ∩TqN), generalizing formula (1) which corresponds to the caseN = M. More precisely, dimH(N) = QN

where

QN :=
r(p)

∑
i=1

i(dim(D i
p∩TpN)−dim(D i−1

p ∩TpN)).

This actually follows from a stronger property: indeed, we show that theQN-dimensional spherical Hausdorff measure
in N is absolutely continuous with respect to any smooth measure(i.e. any measure induced locally by a volume
form) onN. The Radon–Nikodym derivative computed in Theorem 1 generalizes [1, Lemma 32], which corresponds
to the caseN = M. The main ingredient behind the proofs of such results is thefact that for a strongly equiregular
submanifoldN the metric tangent cone to(N,d|N) exists at everyp ∈ N and can be identified toTpN via suitable
systems of privileged coordinates (see Lemma 1).

The results for strongly equiregular submanifolds providea first step towards the answer of questions 1 and 2 in the
general case, at least for analytic sub-Riemannian manifolds. This is the topic in the second part of the paper. Indeed,
when(M,D ,g) is analytic,M can be stratified asM = ∪i≥0Mi where eachMi is an analytic equiregular submanifold.
Then, the Hausdorff dimension of a small ballB is the maximum of the Hausdorff dimensions of the intersections
B∩Mi . To compute the latter ones, we use that each strataMi can further be decomposed as the disjointed union of
strongly equiregular analytic submanifolds. In Lemma 3, using Theorem 1 we compute the Hausdorff dimension of an
equiregular (but possibly not strongly equiregular) analytic submanifold and we estimate the density of the correspond-
ing Hausdorff measure. Characterizing the finiteness of thecorresponding Hausdorff measure of the intersection of a
small ball with an equiregular analytic submanifold is rather involved. Yet this is the main issue in question 2, as when-
ever the Hausdorff measure ofB(p,ρ)∩{regular points} is infinite at a singular pointp then so isH dimH (M)(B(p,ρ)).
To estimateH dimH (M)(B(p,ρ)∩{regular points}), we assume that the singular pointp is “typical”, that is, it belongs
to a strongly equiregular submanifoldN of the singular set. In Theorem 2 we characterize the finiteness of the afore-
mentioned measure at typical singular points through an algebraic relation involving the Hausdorff dimensionQreg
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near a regular point, the Hausdorff dimensionQN of N, and the nonholonomic order atp of the volume form onM
evaluated along some families of vector fields, given by Lie brackets between generators of the distribution.

The proof of Theorem 2 (and of Proposition 1) will appear in a forthcoming paper.
The structure of the paper is the following. In Section 2 we recall shortly the definitions of Hausdorff measures

and dimension and some basic notions in sub-Riemannian geometry. Section 3 is devoted to the the definition and the
study of strongly equiregular submanifolds and contains the proof of Theorem 1 and the statement of Proposition 1. In
Section 4 we treat analytic sub-Riemannian manifolds. First, we estimate the Hausdorff dimension̄QN of an analytic
equiregular submanifoldN in Section 4.1. Then, in Section 4.2, we prove that theQ̄N-dimensional Hausdorff measure
of the intersection of a small ballB(p,ρ) with N is finite if p ∈ N and we state Theorem 2. Finally, we end by
applying our results to some examples of sub-Riemannian manifolds in Section 4.3. In particular, the examples show
that when the Hausdorff dimension of a ball centered at a singular point is equal to the Hausdorff dimension of the
whole manifold, the corresponding Hausdorff measure can beboth finite or infinite.

2 Basic notations

2.1 Hausdorff measures

Let (M,d) be a metric space. We denote by diamS the diameter of a setS⊂ M, by B(p,ρ) the open ball{q ∈ M |
d(q, p)<ρ}, and byB(p,ρ) the closure ofB(p,ρ). Letα ≥ 0 be a real number. For every setA⊂M, theα-dimensional
Hausdorff measureH α of A is defined asH α(A) = limε→0+ H α

ε (A), where

H α
ε (A) = inf

{
∞

∑
i=1

(diamSi)
α : A⊂

∞⋃

i=1

Si, Si closed set, diamSi ≤ ε

}
,

and theα-dimensional spherical Hausdorff measureis defined asS α(A) = limε→0+ S α
ε (A), where

S α
ε (A) = inf

{
∞

∑
i=1

(diamSi)
α : A⊂

∞⋃

i=1

Si , Si is a ball, diamSi ≤ ε

}
.

For every setA⊂ M, the non-negative number

D = sup{α ≥ 0 | H α(A) = ∞}= inf{α ≥ 0 | H α(A) = 0}

is called theHausdorff dimension of A. TheD-dimensional Hausdorff measureH D(A) is called the Hausdorff volume
of A. Notice that this volume may be 0,> 0, or∞.

Given a subsetN ⊂ M, we can consider the metric space(N,d|N). Denoting byH α
N andS α

N the Hausdorff and
spherical Hausdorff measures in this space, by definition wehave

H α
xN(A) := H α(A∩N) = H α

N (A∩N),

S α
xN(A) := S α(A∩N)≤ S α

N (A∩N). (2)

These are a simple consequences of the fact that a setC is closed inN if and only if C = C′ ∩N, with C′ closed in
M. Notice that the inequality (2) is strict in general, as coverings in the definition ofS α

N are made with setsB which
satisfyB= B(p,ρ)∩N with p∈ N, whereas coverings in the definition ofS α

xN include sets of the typeB(p,ρ)∩N
with p /∈ N. Moreover, by construction of Hausdorff measures, for every subsetS⊂N, H α(S)≤S α(S)≤ 2αH α(S)
andH α

N (S)≤ S α
N (S)≤ 2αH α

N (S). Hence

H α (S)≤ S α
N (S)≤ 2αH α(S),
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andS α
N is absolutely continuous with respect toH α

xN.

2.2 Sub-Riemannian manifolds

A sub-Riemannian manifold of classC k (k = ∞ or k = ω in the analytic case) is a triplet(M,D ,g), whereM is a
C k-manifold,D is a Lie-bracket generatingC k-subbundle ofTM of rankm< dimM andg is a Riemannian metric of
classC k onD . Using the Riemannian metric, the length of horizontal curves, i.e., absolutely continuous curves which
are almost everywhere tangent toD , is well-defined. The Lie-bracket generating assumption implies that the distance
d defined as the infimum of length of horizontal curves between two given points is finite and continuous (Rashewski–
Chow Theorem). We refer tod as thesub-Riemannian distance. The setM endowed with the sub-Riemannian distance
d is a metric space(M,d) (often calledCarnot-Carath́eodory space) which has the same topology than the manifold
M.

We denote byDq ⊂ TqM the fiber ofD overq. The subbundleD can be identified with the module of sections

{X ∈ Vec(M) | X(q) ∈ Dq,∀q∈ M}.

Giveni ≥ 1, define recursively the submoduleD i of Vec(M) by

D1 = D , D i+1 = D i +[D ,D i ].

SetD i
q = {X(q) | X ∈ D i}. Notice that the identification between the submoduleD i and the distributionq 7→ D i

q is
no more meaningful when the dimension ofD i

q varies as a function ofq (see the discussion in [3, page 48]). The
Lie-bracket generating assumption implies that for everyq∈ M there exists an integerr(q), thenon-holonomy degree
at q, such that

{0} ⊂ D1
q ⊂ ·· · ⊂ D

r(q)
q = TqM. (3)

The sequence of subspaces (3) is called theflag ofD at q. Setni(q) = dimD i
q and

Q(q) =
r(q)

∑
i=1

i(ni(q)−ni−1(q)), (4)

wheren0(q) = 0.
We say that a pointp is regular if, for every i, ni(q) is constant asq varies in a neighborhood ofp. Otherwise, the

point is said to besingular. A subsetA ⊂ M is calledequiregularif, for every i, ni(q) is constant asq varies inA.
When the whole manifold is equiregular, the integerQ(q) defined in (4) does not depend onq and it is the Hausdorff
dimension of(M,d) (see [12]).

Given p∈ M, let X1, . . . ,Xm be a local orthonormal frame ofD . A multiindex I of length|I |= j ≥ 1 is an element
of {1, . . . ,m} j . With any multiindexI = (i1, . . . , i j ) is associated an iterated Lie bracketXI = [Xi1, [Xi2, . . . ,Xi j ] . . . ] (we
setXI = Xi1 if j = 1). The set of vector fieldsXI such that|I | ≤ j is a family of generators of the moduleD j . As a
consequence, if the values ofXI1, . . . ,XIn at q∈ M are linearly independent, then∑i |Ii | ≥ Q(q).

LetY be a vector field. We define thelength of Yby

ℓ(Y) = min{i ∈N |Y ∈ D i}.

In particular,ℓ(XI )≤ |I |. Note that, in general, if a vector fieldY satisfiesY(q) ∈ D i
q for everyq∈ M, Y need not be in

the submoduleD i . By anadapted basisto the flag (3) atq, we meann vector fieldsY1, . . . ,Yn such that their values at
q satisfy

D i
q = span{Yj(q) | ℓ(Yj)≤ i}, ∀ i = 1, . . . , r(q).
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In particular,∑n
i=1ℓ(Yi) = Q(q). As a consequence, a family of bracketsXI1, . . . ,XIn such thatXI1(q), . . . ,XIn(q) are

linearly independent is an adapted basis to the flag (3) atq if and only if ∑i |Ii |= Q(q).

3 Hausdorff dimensions and volumes of strongly equiregularsubmanifolds

In this section, we answer question 3 whenN is a particular kind of submanifold, namely a strongly equiregular one.
These results include the case whereM itself is equiregular.

3.1 Strongly equiregular submanifolds

Let N ⊂ M be a smooth connected submanifold of dimensionb. Theflag at q∈ N ofD restricted to Nis the sequence
of subspaces

{0} ⊂ (D1
q ∩TqN)⊂ ·· · ⊂ (D

r(q)
q ∩TqN) = TqN. (5)

Set

nN
i (q) = dim(D i

q∩TqN) and QN(q) =
r(q)

∑
i=1

i(nN
i (q)−nN

i−1(q)),

with nN
0 (q) = 0.

Definition 1. We say thatN is strongly equiregularif

(i) N is equiregular, that is, for everyi, the dimensionni(q) is constant asq varies inN.
(ii) for every i, the dimensionnN

i (q) is constant asq varies inN.

In this case, we denote byQN the constant value ofQN(q), q∈ N.

By anadapted basisto the flag (5) atq∈ N, we meanb vector fieldsZ1, . . . ,Zb such taht

D i
q∩TqN = span{Z j(q) | ℓ(Z j)≤ i}, ∀ i = 1, . . . , r(q).

In particular, whenZ1, . . . ,Zb is adapted to the flag (5), we haveTqN = span{Z1(q), . . . ,Zb(q)} andQN = ∑b
i=1ℓ(Zi).

Recall that the metric tangent cone1 to (M,d) at any pointp exists and it is isometric to(TpM, d̂p), whered̂p denotes
the sub-Riemannian distance associated with a nilpotent approximation atp (see [3]). The following lemma shows the
relevance of strongly equiregular submanifolds as particular subsets ofM for which a metric tangent cone exists. Such
metric space is isometrically embedded in a metric tangent cone to the wholeM at the point.

Lemma 1. Let N⊂ M be a b-dimensional submanifold of M. Assume N is strongly equiregular. Then, for every p∈ N:

(i) there exists a metric tangent cone to(N,d|N) at p and it is isometric to(TpN, d̂p|TpN);
(ii) the graded vector space

gr
N
p(D) :=⊕

r(p)
i=1 (D

i
p∩TpN)/(D i−1

p ∩TpN)

is a nilpotent Lie algebra whose associated Lie groupGrNp (D) is diffeomorphic to TpN;

(iii )every b-formω ∈
∧bN on N induces canonically a left-invariant b-form̂ω p onGrNp (D). Moreover,

ˆ

N∩B(p,ε)
ω = εQN

ˆ

TpN∩B̂p

ω̂ p+o(εQN), (6)

1 in Gromov’s sense, see [7]
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where o(εQN) is uniform as p varies in N and̂Bp is the ball centered at0 of radius1 in the nilpotent approximation
at p of the sub-Riemannian manifold.

Remark 1.When N is an open submanifold ofM, assumingN strongly equiregular is equivalent to saying thatN
contains only regular points. In that case, Lemma 1 is well-known (point (i) follows by the fact that the nilpotent
approximation is a metric tangent cone, point (ii) says thatthe tangent cone shares a group structure - which in this
case satisfies the additional propertygrp(D) = spanp{D

1} - and (iii) has been remarked in [1] using the canonical
isomorphism between

∧n(grp(D)∗) and
∧n(T∗

p M).

Proof. Note first that since the result is of local nature, it is sufficient that we prove it on a small neighbourhood
B(p0,ρ)∩N of a pointp0 ∈ N. For everyp in a such a neighbourhood, there exists a coordinate systemϕp : Up →R

n

on a neighborhoodUp ⊂ M of p, such thatϕp are privileged coordinates atp, p 7→ ϕp is continuous, andN is rectified
in coordinatesϕp, that isϕp(N∩Up)⊂ {x∈R

n | xb+1 = · · ·= xn = 0}. The construction is as follows.
Givenρ > 0 small enough, we can findb vector fieldsY1, . . . ,Yb defined onB(p0,ρ) which form a basis adapted to

the flag (5) restricted toN at everyp∈ B(p0,ρ)∩N. Moreover, up to reducingρ , we can findYb+1, . . . ,Yn such that
Y1, . . . ,Yn is adapted to the flag (3) of the distribution at every pointp∈ B(p0,ρ)∩N. Using these bases, we define for
p∈ N∩B(p0,ρ), a local diffeomorphismΦp : Rn → M by

Φp(x) = exp

(
n

∑
i=b+1

xiYi

)
◦exp

(
b

∑
i=1

xiYi

)
(p). (7)

The inverseϕp = Φ−1
p of Φp provides a system of coordinates centered atp which are privileged (see [9]). Moreover,

thanks to property (i) in Definition 1, the map fromB(p0,ρ)∩N to M which associates withp the pointΦp(x) is
smooth for everyx∈ R

n. Finally, in coordinatesϕp, the submanifoldN∩U coincides with the set

{
exp

(
b

∑
i=1

xiYi

)
(p) | (x1, . . . ,xb) ∈ Ω

}
⊂
{

Φp(x) | xb+1 = · · ·= xn = 0
}
,

whereΩ is an open subset ofRb.
Using ϕp we identify M with TpM ≃ R

n. SinceY1(p), . . . ,Yb(p) spanTpN, ϕp mapsN in TpN, whereTpN is
identified withRb×{0} ⊂ R

n ≃ TpM. Therefore, wheneverq1,q2 ∈U ∩N we have

d̂p(q1,q2) = d̂p|TpN(q1,q2),

and obviouslyd(q1,q2) = d|N(q1,q2). Hence estimate (70) in [3, Theorem 7.32] holds when we restrict d to N andd̂
to TqN. This allows to conclude that a metric tangent cone to(N,d|N) at p exists and it is isometric to(TpN, d̂p|TpN),
where the inclusion ofTpN into TpM is to be intended viaϕp.

The algebraic structure ofgrN
p (D) and the fact thatGrN

p (D) is diffeomorphic toRb are straightforward. As a

consequence, there also exists a canonical isomorphism between
∧b(grN

p (D)∗) and
∧b(T∗

p N). Let ω̃p be the image
of ωp under such isomorphism (see the construction in [13, Section 10.5]). Thenω̂ p is defined as the left-invariant
b-form onTpN which coincides withω̃p at the origin.

Finally, as a consequence of point (i), by definition of metric tangent coneϕp(B(p,ε)∩N) converges tôB(0,ε)∩
TpN in the Gromov–Hausdorff sense asε goes to 0. By homogeneity of̂dp we haveB̂(0,ε)∩TpN = εQN(B̂p∩TpN)

and we get (6). Sincep 7→ ϕp andp 7→ B̂p are continuous [1, Section 4.1], the remaindero(εQN) in (6) is uniform with
respect top. �

For the sake of completeness, let us give an explicit formulafor ω̂ p. Recall that the construction of the coordinates
ϕp involves an adapted basisY1, . . . ,Yb to the flag (5) restricted toN at everyp∈ B(p0,ρ)∩N. In particular the vector
fieldsY1, . . . ,Yb restricted toN form a local frame for the tangent bundle toN and

ω = ω(Y1, . . . ,Yb)d(Y1|N)∧·· ·∧d(Yb|N).
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Let X1, . . . ,Xm be a local orthonormal frame for the sub-Riemannian structure in a neighborhood ofp, andXI1, . . . ,XIn
be an adapted basis to the flag (3) atp, whereXI j is the Lie bracket corresponding to the multi-indexI j . Since
XI1, . . . ,XIn is a local frame for the tangent bundle toM, for everyi = 1, . . . ,b we can writeYi in this basis as

Yi = ∑
|I |≤ℓ(Yi)

YI
i XI ,

whereYI
i are smooth function (the fact that only multiindices with length smaller thanℓ(Yi) appear in this sum is due to

the definition of length of a vector field). Denote byX̂p
1 , . . . , X̂

p
m the nilpotent approximation ofX1, . . . ,Xm at p obtained

in coordinatesϕp, and byX̂p
I j

the Lie bracket between thêXp
1 , . . . , X̂

p
m corresponding to the multiindexI j . For every

i = 1, . . . ,b we define the vector field
Ŷp

i = ∑
|I |=ℓ(Yi)

YI
i (p)X̂I .

This enables us to computêω p as

ω̂ p = ωp(Y1(p), . . . ,Yb(p))d(Ŷ
p

1 |TpN)∧·· ·∧d(Ŷp
b |TpN). (8)

The fact that the right-hand side of (8) does not depend on theXI nor on theYi is a consequence of the intrinsic
definition ofω̂ p.

3.2 Hausdorff volume

Assume now thatN is an orientable submanifold. By asmooth volumeon N we mean a measureµ associated with
a never vanishing smooth formω ∈

∧bN, i.e., for every Borel setA ⊂ N, µ(A) =
´

A ω . We will denote byµ̂ p the
smooth volume onTpN associated witĥω p.

We are now in a position to prove the main result.

Theorem 1.Let N⊂M be a smooth orientable submanifold. Assume N is strongly equiregular. Then, for every smooth
volumeµ on N,

lim
ε→0

S QN
N (B(q,ε))

µ(N∩B(q,ε))
=

diamd̂q
(TqN∩ B̂q)

QN

µ̂q(TqN∩ B̂q)
, ∀q∈ N, (9)

wherediamd̂q
denotes the diameter with respect to the distanced̂q. In particular, S QN

N is absolutely continuous with

respect toµ with Radon–Nikodym derivative equal to the right hand side of (9). As a consequence,

dimH N = QN, (10)

and, for a small ball B(p,ρ) centered at a point p∈ N, the Hausdorff volumeH QN(N∩B(p,ρ)) is finite.

Remark 2.When N is an open submanifold ofM, e.g.,N = {p ∈ M | p is regular}, the computation of Hausdorff
dimension is well-known, see [12]. In particular, whenp is a regular point the top-dimensional Hausdorff measure
H Q(B(p, r)) is positive and finite. WhenN = M, equation (9) gives a new proof to [1, Theorem 1]. This is interesting
since the latter was obtained as a consequence of [1, Lemma 32], whose proof is incorrect.

To prove Theorem 1 a fundamental step is the following lemma.

Lemma 2. Let N andµ be as in Theorem 1. Let p∈ N. Assume there exists positive constantsε0 andµ+ > µ− such
that, for everyε < ε0 and every point q∈ B(p,ε0)∩N, there holds

µ−diam(B(q,ε)∩N)QN ≤ µ(B(q,ε)∩N)≤ µ+diam(B(q,ε)∩N)QN . (11)

Then, for everyε < ε0,

7



µ(B(p,ε)∩N)

µ+
≤ S QN

N (B(p,ε)) ≤
µ(B(p,ε)∩N)

µ−
.

Proof.Let
⋃

i B(qi , r i) be a covering ofB(p,ε)∩N with balls of radius smaller thanδ < ε0. If δ is small enough, every
qi belongs toB(p,ε0)∩N and, using (11), there holds

µ(B(p,ε)∩N)≤ ∑
i

µ(B(qi, r i)∩N)≤ µ+∑
i

diam(B(qi , r i)∩N)QN .

Hence, we haveS QN
N (B(p,ε)) ≥ µ(B(p,ε)∩N)

µ+
.

For the other inequality, letη > 0, 0< δ < ε0 and let
⋃

i B(qi , r i) be a covering ofB(p,ε)∩N such thatqi ∈
B(p,ε)∩N ri < δ and∑i µ(B(qi , r i)∩N)≤ µ(B(p,ε))+η . Such a covering exists due to the Vitali covering lemma.
Using as above (11), we obtain

µ(B(p,ε)∩N)+η ≥ ∑
i

µ(B(qi , r i)∩N)≥ µ−∑
i

diam(B(qi , r i)∩N)QN .

We then haveS QN
N,δ (B(p,ε)) ≤

µ(B(p,ε)∩N)
µ−

+ η
µ−

. Lettingη andδ tend to 0, we get the conclusion. �

Proof of Theorem 1.Fix q ∈ N. By point (ii) in Lemma 1(TqN, d̂q|TqN) is a metric tangent cone to(N,d|N) at q,
whence, from the definition of Gromov–Hausdorff convergence we get

lim
ε→0

diam(N∩B(q,ε))
ε

= diamd̂q
(TqN∩ B̂q). (12)

By (6) in Lemma 1, for everyq∈ N there holds

µ(N∩B(q,ε)) = εQN µ̂q(TqN∩ B̂q)+o(εQN). (13)

SinceN is strongly equiregular, the limits in (12) and (13) hold uniformly asq varies inN.
Moreover, adapting the argument in [1, Section 4.1], we deduce that the mapq 7→ µ̂q(B̂q∩TqN) is continuous on

N. As a consequence, for anyη > 0 there existsε1 > 0 such that for everyq∈ B(p,ε1) and everyε < ε1 we have

µ− ≤
µ(N∩B(q,ε))

diam(N∩B(q,ε))QN
≤ µ+

with

µ± =
µ̂q(TqN∩ B̂q)

diamd̂q
(TqN∩ B̂q)QN

±η .

Therefore, applying Lemma 2 and lettingη tend to 0 we deduce (9).
To show (10), notice that the right-hand side of (9) is continuous and positive as a function ofq. Hence, forS QN

N -
almost everyq∈ N there existsρ > 0 small enough such that

0< S QN(N∩B(p,ρ))< ∞. (14)

This is equivalent to (10). �

We end this section by stating a result which gives a weak equivalent of the function̂µq(TqN∩ B̂q) appearing in
Theorem 1. This will be useful in the following to determine whether the Hausdorff volume of a small ball is finite or
not. This result stems from the uniform Ball-Box Theorem, [10] and [11, Th. 4.7].

Proposition 1. Let M be orientable andϖ be a volume form on M. Let N be an orientable submanifold of M of
dimension b, and letω be a volume form on N, with associated smooth volumeµ . Assume N is strongly equiregular
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and set Q[N] equal to the constant value of Q(q), for q∈ N. Then there exists a constant C> 0 such that, for every
q∈ N,

1
C

νq ≤ µ̂q(TqN∩ B̂q)≤Cνq (i.e. µ̂q(TqN∩ B̂q)≍ νq uniformly w.r.t. q),

whereνq =max{
(
ω ∧dXIb+1 ∧·· ·∧dXIn

)
q (XI1(q), . . . ,XIn(q))}, the maximum being taken among all n-tuples(XI1, . . . ,XIn)

in argmax{ϖq(XI ′1
(q), . . . ,XI ′n(q)) | ∑i |I

′
i |= Q[N]}.

In particular, if N is an open equiregular subset of M, i.e., b= n, and ifµ is the smooth measure on M associated
with ϖ , we have

µ̂q(B̂q)≍ max{ϖq(XI ′1
, . . . ,XI ′n) | ∑

i
|I ′i |= Q[M]}, uniformly w.r.t. q∈ M.

This proposition, together with Theorem 1, allows to give anestimate of the Hausdorff volume of a subset ofN. If
S⊂ N, then

1
C′

ˆ

S

1
νq

dµ ≤ H QN(S)≤C′

ˆ

S

1
νq

dµ , (15)

where the constantC′ > 0 does not depend onS.

4 Hausdorff dimensions and volumes of analytic sub-Riemannian manifolds

Let (M,D ,g) be an analytic (Cω ) sub-Riemannian manifold. The setΣ of singular points is an analytic subset ofM
which admits a Whitney stratificationΣ =

⋃
i≥1Mi by analytic and equiregular submanifoldsMi (see for instance [6]).

DenotingM0 = M \ Σ the set of regular points, we obtain a Whitney stratificationM =
⋃

i≥0Mi of M by analytic
and equiregular submanifolds. Note thatM0 is an open and dense subset ofM, but it may be disconnected. As a
consequence, the Hausdorff dimension ofM is

dimH(M) = max
i≥0

dimH(Mi),

and theα-dimensional Hausdorff measure of a ballB(p,ρ), p∈ M andρ > 0, is

H α(B(p,ρ)) = ∑
i

H α(B(p,ρ)∩Mi).

4.1 Hausdorff dimension

The first problem is then to determine the Hausdorff dimension of an equiregular - possibly not strongly equiregular -
submanifold.

Lemma 3. Let N be an analytic and equiregular submanifold of M. SetQN := maxq∈N QN(q). Then

dimH(N) = QN,

and QN(q) = QN on an open and dense subset of N.

If moreover N is orientable, then for every smooth measureµ on N,S QN
N is absolutely continuous with respect to

µ with Radon–Nikodym derivative

dS
QN
N

dµ
(q) =

(diamd̂q
(TqN∩ B̂q))

QN

µ̂q(TqN∩ B̂q)
, for µ-a.e. q∈ N. (16)
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Proof. SinceN is analytic and equiregular, it admits a stratificationN =
⋃

i Ni by strongly equiregular submanifolds
Ni of N. By Theorem 1, dimH(Ni) = QNi and thus dimH(N) = maxi QNi . In particular, dimH(N) ≤ maxq∈N QN(q).

Now, recall thatQN(q) = ∑rN
i=1 i(nN

i (q)−nN
i−1(q)), whererN := r(q) is constant sinceN is equiregular, andnN

rN
(q) =

dimN. This may be rewritten as

QN(q) =
rN−1

∑
i=0

codim(D i
q∩TqN), (17)

where codim(D i
q∩TqN) = nN

rN
(q)−nN

i (q) is the codimension ofD i
q∩TqN in TqN. The submanifoldN being equireg-

ular,QN(q) is a lower semi-continuous function onN with integer values. HenceQN(q) takes its maximal valueQN
on the strataNi which are open inN, and smaller values on non open strata. SinceQNi (q) = QN(q) whenNi is an open
subset ofN andQNi (q)< QN(q) whenNi is a non open subset ofN, the first part of the lemma follows.

As for the second part, notice that every non open stratumNi is of µ-measure zero, sinceNi is a subset ofN

of positive codimension, and ofS QN
N -measure zero, since dimH(Ni) = QNi < QN. A first consequence is thatN is

strongly equiregular nearµ-a.e. pointq. Therefore the measurêµq onTqN is definedµ-a.e. – and so is the right-hand
side of (16). Applying then Theorem 1 to every open stratumNi , we get the conclusion. �

Corollary 1. dimH(M) = max{QMi (q) : i ≥ 0, q∈ Mi}= max{QMi
: i ≥ 0}.

4.2 Finiteness of the Hausdorff volume of balls

Let p ∈ M andρ > 0 (ρ is assumed to be arbitrarily small). The aim of this section is to determine under which
conditions the small ballB(p,ρ) has a finite Hausdorff volumeH dimH (B(p,ρ))(B(p,ρ)). We make first two preliminary
remarks.

• If p is a regular point, then there exists a neighbourhood ofp in M which is strongly equiregular, and Theorem 1
implies thatH dimH(B(p,ρ))(B(p,ρ)) is finite. We then assume in the following thatp is a singular point.

• The results of this section are local. Up to reducing to a neighbourhood ofp, we can assume thatM is an oriented
manifold with volume formϖ .

Recall that, by definition, the stratificationM =
⋃

i≥0Mi is locally finite. That is, there exists a finite setI of
indices such thatp ∈ Mi if and only if i ∈ I , whereMi denotes the closure of the stratumMi . Therefore, forρ
small enough, the ballB(p,ρ) admits a finite stratificationB(p,ρ) =

⋃
i∈I (B(p,ρ)∩Mi). Applying Corollary 1, the

Hausdorff dimensionDp of B(p,ρ) is

Dp = max{QMi (q) : i ∈ I , q∈ Mi}.

Let J ⊂ I be the subset of indicesi such that dimH(Mi) = Dp. We have

H Dp(B(p,ρ)) = ∑
i∈J

H Dp(B(p,ρ)∩Mi).

Proposition 2. Let N be an analytic and equiregular submanifold of M,dimH(N) = QN. If p∈ N and ifρ > 0 is small
enough, then the Hausdorff volumeH QN(B(p,ρ)∩N) is finite.

Proof. Up to replacingN with a small neighbourhood ofp in N, we assume thatN is orientable. We then choose a
smooth measureµ onN and we have, forρ small enough,µ(B(p,ρ)∩N)<+∞. From Lemma 3,

S
QN
N (B(p,ρ)∩N) =

ˆ

B(p,ρ)∩N

(diamd̂q
(TqN∩ B̂q))

QN

µ̂q(TqN∩ B̂q)
dµ .
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The submanifoldN is strongly equiregular nearµ-a.e.q∈ N. We can then apply Proposition 1 nearµ-a.e.q∈ N and
we get

S
QN
N (B(p,ρ)∩N)≤C

ˆ

B(p,ρ)∩N

(diamd̂q
(TqN∩ B̂q))

QN

νq
dµ .

The functionq 7→ νq is positive and continuous onN, so the integrand function in the previous formula is finite and

continuous onN, and we haveS QN
N (B(p,ρ)∩N) ≤ Cst µ(B(p,ρ)∩N)< +∞. SinceH QN is absolutely continuous

with respect toS QN
N , the conclusion follows. �

As a consequence, the Hausdorff volumeH Dp(B(p,ρ)) is finite if and only if H Dp(B(p,ρ)∩Mi) is finite for
every stratumMi such that dimH(Mi) = Dp and p ∈ ∂Mi . To go further, we will assume thatp is a typical singular
point, that is, thatp satisfies the following assumptions forρ small enough:

(A1) p belongs to a strongly equiregular submanifoldN of M, N ⊂ Σ , andB(p,ρ)∩Σ ⊂ N;
(A2) for everyq∈ N∩B(p,ρ), there exists a familyXI1, . . . ,XIn such that∑i |Ii |= Qreg and ordqϖ(XI1, . . . ,XIn) = σ ,

whereQreg is the constant value ofQ(q) for q∈ M \Σ , and

σ = max{s∈ N : q∈ N∩B(p,ρ) and∑
i

|Ii |= Qreg imply ordqϖ(XI1, . . . ,XIn)≥ s}.

Let us recall the definition of ordq (see [3] for details). Givenf ∈ C k(M), we say thatf hasnon-holonomic order
at p greater than or equal to s, and we write ordp f ≥ s if for every j ≤ s−1

(Xi1 . . .Xi j f )(p) = 0 ∀ (i1, . . . , i j) ∈ {1, . . . ,m} j ,

whereXi f denotes the Lie derivative off alongXi. Equivalently, f (q) = O(d(p,q)s). If moreover we do not have
ordp f ≥ s+1, then we say thatf hasnon-holonomic order at p equal to s, and we write ordp f = s.

Theorem 2.Assume p satisfies (A1) and (A2). Let QN be the constant value of QN(q) for q∈N, and r6N be the maximal
integer i such that ni(p)−ni−1(p)> nN

i (p)−nN
i−1(p). Then

H Qreg(B(p,ρ)\Σ)< ∞ ⇔ σ ≤ Q(p)−QN− r 6N.

As a consequence,

• if Qreg< QN, then Dp = QN andH Dp(B(p,ρ)) is finite;
• if Qreg≥ QN, then Dp = Qreg andH Dp(B(p,ρ)) is finite if and only ifσ ≤ Q(p)−QN− r 6N.

The proof of this theorem is postponed to a forthcoming paper. It relies on the use of Proposition 1.

Remark 3.Assumption (A2) is actually not necessary for the computations. If p satisfies only (A1), we introduce two
integersσ− ≤ σ+:

σ+ = min{s∈N : ∀q∈ N∩B(p,ρ), ∃XI1, . . . ,XIn s.t. ∑i |Ii |= Qreg and ordqϖ(XI1, . . . ,XIn)≤ s},
σ− = max{s∈ N : ∃ an open subsetΩ of N∩B(p,ρ) s.t.q∈ Ω and∑i |Ii |= Qreg imply ordqϖ(XI1 , . . . ,XIn)≥ s}.

Assumption (A2) is equivalent toσ− = σ+ = σ . The generalization of the criterion of Theorem 2 to the casewherep
satisfies only (A1) is then:

• if σ+ ≤ Q(p)−QN− r 6N, thenH Qreg(B(p,ρ)\Σ)< ∞;
• if σ− > Q(p)−QN− r 6N, thenH Qreg(B(p,ρ)\Σ) = ∞.

Notice that the orderσ (andσ− if p does not satisfies (A2)) always satisfiesσ ≥ Q(p)−Qreg. We thus obtain a
simpler criterion for the non finiteness of the Hausdorff volume of a ball.

Corollary 2. Assume p satisfies (A1). If0≤ Qreg−QN < r 6N, thenH Dp(B(p,ρ)) = ∞.
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4.3 Examples

Example 1 (the Martinet space).Consider the sub-Riemannian manifold given byM = R
3, D = span{X1,X2},

X1 = ∂1, X2 = ∂2+
x2

1

2
∂3,

and the metricdx2
1+dx2

2. We chooseϖ = dx1∧dx2∧dx3, that is, the canonical volume form onR3.
The growth vector is equal to(2,2,3) on the planeN = {x1 = 0}, and it is(2,3) elsewhere. As a consequence,N is

the set of singular points. At a regular point,Qreg= 4. Every singular pointp= (0,x2,x3) satisfies (A1) and we have
Q(p) = 5, QN = 4, andr 6N = 1. Applying Corollaries 1 and 2, we obtain:

dimH(M) = 4, and H 4(B(p,ρ))< ∞ if p regular, H 4(B(p,ρ)) = ∞ otherwise.

Thus small balls centered at singular points have infinite Hausdorff volume. This result can also be obtained by a direct
computation based on the uniform Ball-Box Theorem, see [11].

Note that the only family(XI1,XI2,XI3) such that∑i |Ii |= Qreg is (X1,X2, [X1,X2]). The volume form of this family
equalsx1 and it is of order 1 at every point ofN. Thus every singular point satisfies assumptions (A1) and (A2) with
σ = 1 (σ = Q(p)−Qreg here).

Example 2.Consider the sub-Riemannian manifold given byM = R
4, D = span{X1,X2,X3}, where

X1 = ∂1, X2 = ∂2+
x2

1

2
∂4, X3 = ∂3+

x2
2

2
∂4,

andg= dx2
1+dx2

2+dx2
4. We chooseϖ as the canonical volume form onR4.

At a regular point,Qreg = 5. The set of singular points isN = {x1 = x2 = 0}. Every singular point satisfies (A1)
and we haveQ(p) = 6, QN = 4, andr 6N = 1. Thus, by Corollary 1, dimH(M) = 5. However Corollary 2 does not allow
to conclude on the finiteness of the Hausdorff volume.

The only families such that∑i |Ii |=Qreg are(X1,X2,X3, [X1,X2]) and(X1,X2,X3, [X2,X3]). The volume form applied
to these families is equal tox1 andx2 respectively, and both of them are of order 1 at every point ofN. Thus every
singular point satisfies assumptions (A1) and (A2) withσ = 1 (σ = Q(p)−Qreg here). Applying Theorem 2, we
obtain:

dimH(M) = 5, and H 5(B(p,ρ))< ∞ for any p∈ M.

Example 3.Let M = R
5, D = span{X1,X2,X3},

X1 = ∂1, X2 = ∂2+ x1∂3+ x2
1∂5, X3 = ∂4+ xk

1∂5,

with k> 2, andg= dx2
1+dx2

2+dx2
3. We chooseϖ as the canonical volume form onR5.

The singular set isN = {x1 = 0}. A simple computation shows that every singular pointp satisfies (A1) and (A2),
andQreg = 7, Q(p) = 8, QN = 7, r 6N = 1, andσ = k−1. Thus in this exampleσ > Q(p)−Qreg. Now Corollaries 1
and 2 apply and we obtain

dimH(M) = 7, and H 7(B(p,ρ))< ∞ if p regular, H 7(B(p,ρ)) = ∞ otherwise.

Example 4.Let M = R
5, D = span{X1,X2,X3},

X1 = ∂1, X2 = ∂2+ x1∂3+ x2
1∂5, X3 = ∂4+(xk

1+ xk
2)∂5,

with k> 2, andg= dx2
1+dx2

2+dx2
3. We chooseϖ as the canonical volume form onR5.

The singular set isN = {x1 = x2 = 0}. Every singular pointp satisfies (A1) and (A2) and we haveQreg = 7,
Q(0) = 8, QN = 6, r 6N = 1, andσ = k−1. By Corollary 1 and Theorem 2, we obtain

12



dimH(M) = 7, and H 7(B(p,ρ))< ∞ if p regular, H 7(B(p,ρ)) = ∞ otherwise.

Note that in this case we do not haveQreg−QN < r 6N. This shows that the criterion in Corollary 2 does not provide a
necessary condition for the Hausdorff volume to be infinite.
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Birkhäuser, Basel, 1996.

9. H. Hermes. Nilpotent and high-order approximations of vector field systems.SIAM Rev., 33(2):238–264, 1991.
10. F. Jean. Uniform estimation of sub-Riemannian balls.J. Dynam. Control Systems, 7(4):473–500, 2001.
11. F. Jean. Control of Nonholonomic Systems and Sub-Riemannian Geometry.ArXiv e-prints, 1209.4387, Sept. 2012. Lectures given at
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