
A Normal Form for Generic 2-Dimensional

Almost-Riemannian Structures at a tangency point

U. Boscain∗, G. Charlot†, R. Ghezzi‡

August 26, 2010

Abstract

Two-dimensional almost-Riemannian structures are generalized Riemannian structures on
surfaces for which a local orthonormal frame is given by a Lie bracket generating pair of vector
fields that can become collinear. Generically, there are three type of points: Riemannian points
where the two vector fields are linearly independent, Grushin points where the two vector fields
are collinear but their Lie bracket is not and tangency points where the two vector fields and
their Lie bracket span a one-dimensional space and the missing direction is obtained with one
more bracket.

In this paper we consider the problem of finding a normal form at a generic tangency point.
The problem happens to be equivalent to finding a smooth canonical parameterized curve passing
through the point and transversal to the distribution. It is known that the cut locus from the
point is not a good candidate since it is not smooth. Therefore, we analyse the cut locus from the
singular set and we prove that it is not smooth either. A good candidate appears to be a crest of
the Gaussian curvature. Such crest is uniquely determined and has a natural parametrization.

1 Introduction

A 2-dimensional Almost Riemannian Structure (2-ARS for short) is a rank-varying sub-Riemannian
structure that can be defined locally by a pair of smooth vector fields on a 2-dimensional manifold,
satisfying the Hörmander condition. These vector fields play the role of an orthonormal frame.

Let us denote by ∆(q) the linear span of the two vector fields at a point q. Where ∆(q) is
2-dimensional, the corresponding metric is Riemannian. Where ∆(q) is 1-dimensional, the corre-
sponding Riemannian metric is not well defined, but thanks to the Hörmander condition one can
still define the Carnot-Caratheodory distance between two points, which happens to be finite and
continuous.

2-ARSs were introduced in the context of hypoelliptic operators [17, 18], they appeared in
problems of population transfer in quantum systems [14, 13, 12], and have applications to orbital
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transfer in space mechanics [9, 8]. 2-ARSs are a particular case of Rank-varying sub-Riemannian
structures (see for instance [7, 19, 23]).

Generically, the singular set Z, where ∆(q) has dimension 1, is a 1-dimensional embedded
submanifold (see [3]) and there are three types of points: Riemannian points, Grushin points where
∆(q) is 1-dimensional and transversal to Z, and tangency points where ∆(q) is tangent to Z, these
last ones being isolated.

2-ARSs present very interesting phenomena. For instance, the presence of a singular set permits
the conjugate locus to be nonempty even if the Gaussian curvature is negative, where it is defined
(see [3]). Moreover, a Gauss–Bonnet-type formula can be obtained. More precisely, in [3, 16] the
authors studied the generic case without tangency points. In [5] this formula was generalized to the
case in which tangency points are present. (For generalizations of Gauss–Bonnet formula in related
contexts, see also [4, 20, 21].) In [15] a necessary and sufficient condition for two 2-ARSs on the
same compact manifold M to be Lipschitz equivalent was given. This equivalence was established
in terms of graphs associated with the structures.

Tangency points are the most difficult to handle due to the fact that the asymptotic of the
distance is different from the two sides of the singular set. In [10] the authors gave a description of
the geometry of the nilpotent approximation at a tangency point, provided jets of the exponential
map and a description of the cut and conjugate loci from a tangency point in the generic case.

However, tangency points are far to be deeply understood. An open question is the convergence
or the divergence of the integral of the geodesic curvature on the boundary of a tubular neigh-
borhood of the singular set, close to a tangency point. This question arose in the proof of the
Gauss–Bonnet theorem given in [5]. In that paper, thanks to numerical simulations, the authors
conjecture the divergence of such integral.

Another open question is how to find a normal form for the orthonormal frame at tangency
points which is completely reduced, in the sense that it depends only on the 2-ARS and not on
its local representation. In [3] the local representations given in Figure 1 were found, but the ones
corresponding to Riemannian and tangency points are not completely reduced. Indeed, there exist
change of coordinates and rotations of the frame for which an orthonormal base has the same
expression as in (F1) (resp. (F3)), but with a different function φ (resp. with different functions ψ
and ξ).

In order to build the coordinate system for which the local expressions found in [3] apply, the
idea was the following. Consider a smooth parametrized curve passing through a point q. If the
curve is assumed to be transversal to the distribution at each point, then the Carnot–Caratheodory
distance from the curve is shown to be smooth on a neighborhood of q (see [3]). Given a point
p near q the first coordinate of p is, by definition, the distance between p and the chosen curve,
with a suitable choice of sign. The second coordinate of p is the parameter corresponding to the
point on the chosen curve that realizes the distance between p and the curve. If the parameterized
curve used in this construction can be built canonically, then one gets a normal form that cannot
be further reduced.

For Riemannian and Grushin points, a canonical parametrized curve transversal to the distri-
bution can be easily identified, at least in the generic case (see Sections 3 and the Appendix). For
Grushin points, a canonical curve transversal to the distribution is the set Z. This curve has also
a natural parameterization as explained below Proposition 2.

As concerns the local expression (F3) (see Figure 1), in [3] the choice of the smooth parametrized
curve was arbitrary and not canonical. The main purpose of this paper is to find a canonical one.
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Figure 1: The local representations established in [3]

In other words, to identify the true invariants of the structure at a tangency point.
The most natural candidate for such a curve is the cut locus from the tangency point. Never-

theless, this is not a good choice, as in [10] it was proved that in general the cut locus starting from
the point is not smooth but has an asymmetric cusp (see Figure 2). Another possible candidate is
the cut locus from the singular set in a neighborhood of the tangency point. The first result of the
paper concerns the analysis and description of this locus (see Proposition 5). The crucial fact is
that we prove the cut locus from Z in a neighborhood of a tangency point to be non-smooth (see
Figure 2).

A third possibility is to look for crests or valleys of the Gaussian curvature which intersect
transversally the singular set at a tangency point. The second result of the paper (see Theorem 1)
consists in the proof of the existence of such a crest. Moreover, this curve admits a canonical regular
parameterization. Then, a completely reduced normal form is obtained implicitly by requiring this
curve to be the vertical axis. However, explicit relations between the Taylor coefficients of the
functions ψ and ξ at the point can be obtained.

The structure of the paper is the following. In section 2 we briefly recall the notion of almost-
Riemannian structure. Section 3 is devoted to the analysis of local representations of a 2-ARS at
a point and contains the statements of the main results. The proposition describing the cut locus
from the singular set in a neighborhood of a tangency point is proven in Section 4. The main result,
which provides an intrinsic parameterized curve transversal to the distribution at a tangency point
and a relation between the functions ψ and ξ, is proven in Section 5. Finally, in Section 6 we study
the case of Riemannian points. For points such that the gradient of the curvature is nonzero, we
provide a completely reduced normal form. For generic critical points of the curvature, we find a
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relation for the function φ.

2 Preliminaries

In this section we recall some basic definitions in the framework of 2-ARS following [5, 3].
LetM be a smooth surface without boundary. Throughout the paper, unless specified, manifolds

are smooth (i.e., C∞) and without boundary; vector fields and differential forms are smooth. The
set of smooth vector fields on M is denoted by Vec(M).

Definition 1 A 2-dimensional almost-Riemannian structure (2-ARS) is a triple S = (E, f, 〈·, ·〉)
where E is a vector bundle of rank 2 over M and 〈·, ·〉 is a Euclidean structure on E, that is, 〈·, ·〉q
is a scalar product on Eq smoothly depending on q. Finally f : E → TM is a morphism of vector
bundles, i.e., (i) the diagram

E
f

//

πE
!!D

D

D

D

D

D

D

D

TM

π

��

M

commutes, where π : TM → M and πE : E → M denote the canonical projections and (ii) f is
linear on fibers. Denoting by Γ(E) the C∞(M)-module of smooth sections on E, we require the
morphism f∗ : Γ(E) → Vec(M), f∗(σ) = f ◦ σ to be injective. Moreover, we assume the submodule
∆ = f∗(Γ(E)) to be bracket generating, i.e., Lieq(∆) = TqM for every q ∈M .

A property (P ) defined for 2-ARSs is said to be generic if for every rank-2 vector bundle E over
M , (P ) holds for every f in an open and dense subset of the set of morphisms of vector bundles
from E to TM , endowed with the C∞-Whitney topology.

Let S = (E, f, 〈·, ·〉) be a 2-ARS on a surface M . We denote by ∆(q) the linear subspace
{V (q) | V ∈ ∆} = f(Eq) ⊆ TqM . The set of points in M such that dim(∆(q)) < 2 is called singular
set and denoted by Z. The Euclidean structure on E induces a symmetric positive-definite bilinear
form G : ∆ ×∆ → C∞(M) defined by G(V,W ) = 〈σV , σW 〉 where σV , σW are the unique sections
of E satisfying f◦σV = V, f◦σW =W . At points q ∈M where f|Eq is an isomorphism, G is a tensor
and the value G(V,W )|q depends only on V (q),W (q). This is no longer true at points q where f|Eq

is not injective.
If (σ1, σ2) is an orthonormal frame for 〈·, ·〉 on an open subset Ω of M , an orthonormal frame

for G on Ω is given by (f ◦ σ1, f ◦ σ2).
For every q ∈M and every v ∈ ∆(q) define Gq(v) = inf{〈u, u〉q | u ∈ Eq, f(u) = v}.
An absolutely continuous curve γ : [0, T ] → M is admissible for S if there exists a measurable

essentially bounded function [0, T ] ∋ t 7→ u(t) ∈ Eγ(t) such that γ̇(t) = f(u(t)) for almost every
t ∈ [0, T ]. Given an admissible curve γ : [0, T ] →M , the length of γ is

ℓ(γ) =

ˆ T

0

√

Gγ(t)(γ̇(t)) dt.

The Carnot-Caratheodory distance (or sub-Riemannian distance) onM associated with S is defined
as

d(q0, q1) = inf{ℓ(γ) | γ(0) = q0, γ(T ) = q1, γ admissible}.
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The finiteness and the continuity of d(·, ·) with respect to the topology of M are guaranteed by the
Lie bracket generating assumption on the rank-varying sub-Riemannian structure (see [6]). The
Carnot-Caratheodory distance endows M with the structure of metric space compatible with the
topology of M as differential manifold.

A geodesic for S is an admissible curve γ : [0, T ] → M , such that Gγ(t)(γ̇(t)) is constant and
for every sufficiently small interval [t1, t2] ⊂ [0, T ] γ|[t1,t2] is a minimizer of ℓ. A geodesic for which
Gγ(t)(γ̇(t)) is (constantly) equal to one is said to be parameterized by arclength.

Locally, in an open set Ω, if (F1, F2) is an orthonormal frame, a curve parameterized by arclength
is a geodesic if and only if it is the projection on Ω of a solution of the Hamiltonian system
corresponding to the Hamiltonian

H(q,p) =
1

2
((pF1(q))

2 + (pF2(q))
2), q ∈ Ω,p ∈ T ∗

q Ω.

lying on the level set H = 1/2. This is the Pontryagin Maximum Principle [22] in the case of
2-ARS. Its simple form follows from the absence of abnormal extremals in 2-ARS, as a conse-
quence of the Hörmander condition see [3]. When looking for geodesics γ minimizing the distance
from a submanifold (possibly of dimension zero) T , one should add the transversality condition
p(0)Tγ(0)T = 0.

The cut locus KT from T is the set of points p for which exists a geodesic realizing the distance
between T and p which loses optimality after p.

It is well known (see for instance [1] for a proof in the three-dimensional contact case) that if
p ∈ KT then one of the following two possibilities happen: i) more than one minimizing geodesics
reach p; ii) p belongs to the first conjugate locus from T defined as follows. To simplify the notation,
assume that all geodesics are defined in [0,∞[. Define

C0 = {(q,p) ∈ T ∗Ω | q ∈ T , H(q,p) = 1/2, pTqT = 0}

and

exp : C0 × [0,∞[→M

λ 7→ π(et
~Hλ)

where π is the canonical projection (q,p) → q and ~H is the Hamiltonian vector field corresponding
to H. The first conjugate time is

t(λ) = min{t > 0, (λ, t) is a critical point of exp}.

and the first conjugate locus is {exp(λ, t(λ)) | λ ∈ C0}.

3 Normal forms and main results

Let us introduce the main assumptions under which all the results of the paper are proven.
We say that a 2-ARS satisfies condition (H0) if the following properties hold: (i) Z is an em-

bedded one-dimensional submanifold ofM ; (ii) the points q ∈M at which ∆2(q) is one-dimensional
are isolated; (iii) ∆3(q) = TqM for every q ∈ M , where ∆1 = ∆ and ∆k+1 = ∆k + [∆,∆k]. The
property (H0) is generic for 2-ARSs.
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3.1 Completely reduced normal forms

Definition 2 A local representation of a 2-ARS at a point q ∈M is a pair of vector fields (X,Y )
on R2 such that there exist: i) a neighborhood U of q in M , a neighborhood V of (0, 0) in R2 and
a diffeomorphism ϕ : U → V such that ϕ(q) = (0, 0); ii) a local orthonormal frame (F1, F2) of ∆
around q, such that ϕ∗F1 = X, ϕ∗F2 = Y , where ϕ∗ denotes the push-forward.

Definition 3 We say that a local representation is completely reduced if it corresponds to a canon-
ical choice of ϕ, F1 and F2, up to orientation. In this case we call the pair (X,Y ) a completely
reduced normal form.

Remark 1 The expression “Up to orientation” is necessary since, if ϕ = (ϕ1, ϕ2), there is no way
in general to choose canonically among (ϕ1, ϕ2), (−ϕ1, ϕ2), (−ϕ1,−ϕ2), (ϕ1,−ϕ2), and among
(F1, F2), (−F1, F2), (−F1,−F2), (F1,−F2).

Remark 2 Here by canonical we mean that it depends only on the 2-ARS. In this case if X =
(X1(x, y),X2(x, y)) and Y = (Y1(x, y), Y2(x, y)) then up to sign and up to the transformations
x → −x and y → −y, we have that X1(x, y), X2(x, y), Y1(x, y), Y2(x, y) are functional invariants
of the system.

Proposition 1 Under the hypothesis (H0), it is always possible to get a local representation in
the form X = ∂x, Y = f(x, y)∂y, where f is a smooth function such that one of the following
conditions holds: f(0, 0) 6= 0, ∂xf(0, 0) 6= 0, ∂xxf(0, 0) 6= 0.

The proof of this proposition can be found in [3]. The first step of the proof consists in choosing
a parameterized curve C transversal to ∆ at q and in defining locally around q a function sign
whose value is +1 on one side and −1 on the other. The second step consists in proving that the
function δ obtained by multiplying sign by the distance function to the curve C is smooth around
q. The third step consists in choosing as first coordinate of a point p the value of δ(p) and as second
coordinate the parameter of the point on the curve C which realizes such distance. In this system
of coordinates an orthonormal frame has the form given in the proposition above.

Conversely, for a local representation of the form X = ∂x, Y = f(x, y)∂y, the vertical axis is
transversal to the distribution and |x| is the distance of a point (x, y) from it.

Hence we have the following:

Claim: up to orientation, constructing a local representation of the form X = ∂x, Y = f(x, y)∂y
is equivalent to choose a parameterized curve transversal to the distribution.

Thanks to the claim, constructing a completely reduced normal form of the type (∂x, f(x, y)∂y)
is equivalent to choose a canonical parameterized curve transversal to the distribution.

In [3] the following local representations were constructed.

Proposition 2 If a 2-ARS satisfies (H0), then for every point q ∈M there exist a neighborhood U
of q and an orthonormal frame (F1, F2) of the ARS on U such that, up to a change of coordinates,
q = (0, 0) and (F1, F2) has one of the forms

(F1) F1(x, y) =
∂
∂x
, F2(x, y) = eφ(x,y) ∂

∂y
,

(F2) F1(x, y) =
∂
∂x
, F2(x, y) = xeφ(x,y) ∂

∂y
,

(F3) F1(x, y) =
∂
∂x
, F2(x, y) = (y − x2ψ(x))eξ(x,y) ∂

∂y
,

6



where φ, ψ and ξ are smooth functions such that φ(0, y) = 0 and ψ(0) > 0.

A point q is said to be Riemannian if ∆(q) = TqM , Grushin point if ∆(q) is one-dimensional
and ∆2(q) = TqM , tangency point if ∆(q) = ∆2(q) and ∆3(q) = TqM . If the structure satisfies
(H0), then a local representation for a Riemannian, Grushin, tangency point is (F1), (F2), (F3)
respectively.

In the local representations given in Proposition 2, (F2) is completely reduced. Indeed, in the
proof of Proposition 2 (see [3]) the authors chose as curve C the singular set Z, which is naturally
associated to the structure. It is easy to see that for any orthonormal frame (G1, G2), the Lie
bracket [G1, G2]|Z modulo elements in ∆ does not change. As for the parametrization of Z, the
choice in [3] was such that [F1, F2]|Z = ∂

∂y
modulo ∆. For what concerns (F1) and (F3), they are

not completely reduced since the curve transversal to the distribution is arbitrary. Our aim is to
provide at Riemannian and tangency points a canonical choice of a parametrized curve associated
with the structure.

First, let us consider the case of Riemannian points. Generically, the set of Riemannian points
p ∈ M such that the gradient of the Gaussian curvature K is singular is a discrete set Π, and
at each point of this discrete set, exactly one crest and one valley of K passes through the point.
Hence, at a point outside Π, one can choose as C the level set of the curvature, parameterized by
arclength. For points of Π, one can choose the crest or the valley parameterized by arclength.

In the following proposition we sum up the analysis of normal forms at Riemannian points. For
the sake of readability, the proof is postponed to Section 6.

Proposition 3 Let q ∈ M be a Riemannian point of a generic 2-ARS. If ∇K(q) 6= 0, then a
completely reduced normal form for S at q is (F1) where φ(0, y) ≡ 0 and

−2∂2xφ(0, y)∂x∂yφ(0, y) + ∂2x∂yφ(0, y) ≡ 0.

If ∇K(q) = 0, then a local representation for S at q is (F1) where φ(0, y) ≡ 0 and h0 = 0 where
h0 is defined in formula (12).

The case of tangency points is rather complicated. The first candidate as smooth curve is the cut
locus from the tangency point. Let us recall a result of [10] where the shape of the cut locus at a
tangency point has been computed.

Proposition 4 Let S be a 2-ARS on M satisfying (H0). Let q ∈M be a tangency point such that
there exists a local representation of the type (F3) for S at q with the property

ψ′(0) + ψ(0)∂xξ(0, 0) 6= 0.

Then the cut locus from the tangency point accumulates at q as an asymmetric cusp whose branches
are separated locally by Z. In the coordinates system where the chosen local representation is (F3),
the cut locus accumulates as the set

{(x, y) | y > 0, y2 − α1x
3 = 0} ∪ {(x, y) | y < 0, y2 − α2x

3 = 0},

with αi = ci/(ψ
′(0) +ψ(0)∂xξ(0, 0))

3, the constants ci being nonzero and independent on the struc-
ture.
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Figure 2: The singular locus (dotted line), the cut locus from a tangency point (semidashed line),
the cut locus from the singular set (dashed line), and the crests of the Gaussian curvature (solid
lines) for the ARS with orthonormal frame F1 = ∂

∂x
, F2 = (y − x2 − x3) ∂

∂y
. In this case there

are three crests of the curvature. Notice that all the crests except only one are tangent to the
distribution.

Due to Proposition 4, in general the cut locus is not smooth and cannot be used to find a com-
pletely reduced normal form. Another candidate would be the cut locus from Z in a neighborhood
of a tangency point. A description of such locus is given by the following proposition.

Proposition 5 Let q ∈M be a tangency point of a 2-ARS satisfying hypothesis (H0) and assume
there exists a local representation of the type (F3) for S at q with the property

ψ′(0) + ψ(0)∂xξ(0, 0) 6= 0.
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Then the cut locus from the singular set Z in a neighborhood of q accumulates at q as the union
of two curves locally separated by Z, one converging to q transversally to Z, the other one with
tangent direction at q belonging to the distribution. In the chosen local representation, the tangent
line at q to the part of the cut locus which is transverse to the distribution is x = −1

2ψ
′(0)y.

The proof Proposition 5 is in the same spirit of the proof of Proposition 4 (see [10]) and it is
postponed to the next section. Notice that, being non-smooth at the tangency point, the cut locus
from Z cannot be chosen to build a completely reduced normal form.

Finally, we look for a candidate curve to build a completely reduced normal form among the
crests or valleys of the curvature. Generically, a crest passing through a tangency point, being
smooth and transverse to the distribution, happens to exist and to be unique. Moreover we prove
that along this curve the scalar product between the tangent vector to the curve and the gradient
of the curvature is smooth and nonvanishing when prolonged to the tangency point. Requiring it to
be identically equal to 1, we fix a canonical parameterization. More precisely we get the following
result.

Theorem 1 There exists ǫ > 0 and a unique smooth parametrized curve Γ defined on (−ǫ, ǫ) which
satisfies the following properties: (i) Γ(0) = q, Γ′(0) /∈ ∆(q); (ii) the support of Γ is contained in a
crest of the Gaussian curvature K; (iii) G(Γ′(t),∇K(Γ(t))) ≡ 1.

Remark 3 Notice that crests and valleys of the curvature are included in the set

{p ∈M | G(∇(||∇K||2),∇K⊥) = 0},

where ∇K denotes the almost-Riemannian gradient of K, i.e., the unique vector such that G(∇K, ·) =
dK(·), ||∇K||2 = G(∇K,∇K), and (∇K)⊥ satisfies G(∇K, (∇K)⊥) = 0.

This curve can be used to reduce completely the local representation (F3). Unfortunately, since in
the proof of Theorem 1 the crest is obtained as an implicit solution of the equation given in ii),
we cannot get explicitly the relations between the functions ψ and ξ. However, one can compute
relations among the Taylor coefficients of them. For instance, at the first order we get

Proposition 6 In the local representation (F3) we can choose the functions ξ, ψ such that 2ξx(0, 0)ψ(0)−
3ψ′(0) = 0.

The proof of Theorem 1 is given in Section 5.

4 The cut locus from the singular set

In this section we prove Proposition 5 starting from the local representation (F3). Notice that
applying the coordinate change

x̃ = x, ỹ =
y

ψ(0)
,

we may assume ψ(0) = 1. For the sake of readability, in the following we rename x̃, ỹ by x, y. Since
ψ(0) > 0, the singular set Z is locally contained in the upper half plane {(x, y) | y ≥ 0}.

Locally, the singular set separates M in two domains {(x, y) | y − x2ψ(x) > 0} and {(x, y) |
y−x2ψ(x) < 0}. Notice that since we are computingKZ , the cut locus from Z, we haveKZ∩Z = ∅.
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Moreover the only point of Z where KZ can accumulate is the tangency point, since all other points
of Z are Grushin points, where ∆ is transversal to Z. Hence, locally, KZ is the union of two parts,
K+

Z lying in the upper domain and K−
Z in the lower one.

As we shall see, the two components of KZ have different natures: in the upper domain the
geodesic starting at a point (a, a2ψ(a)) and minimizing the distance from Z reaches its cut point at
a time of order 1 in |a|, when in the lower domain the geodesic starting at the same point reaches
its cut point at a time of order 1 in

√

|a|.
Applying the Pontryagin Maximum Principle, geodesics for the ARS are projections on R2 of

solutions of the Hamiltonian system associated with the function

H =
1

2
(p2x + p2y(y − x2ψ(x))2e2ξ(x,y)),

that is, solutions of the system



















ẋ = px
ẏ = py((y − x2ψ(x))eξ(x,y))2

ṗx = p2y(y − x2ψ(x))(2xψ(x) + x2ψ′(x)− (y − x2ψ(x)) ∂ξ
∂x

(x, y))e2ξ(x,y)

ṗy = −p2y(y − x2ψ(x))(1 + (y − x2ψ(x)) ∂ξ
∂y
(x, y))e2ξ(x,y).

(1)

In addition, a solution with x(0) = a, y(0) = a2ψ(a), a 6= 0 and minimizing the distance from Z
must satisfy the transversality condition

px(0) = ±1, py(0) = ∓ 1

2aψ(a) + a2ψ′(a)
.

Introducing the new time variable s = t
η
where η > 0 is a parameter, system (1) becomes



















dx
ds

= ηpx
dy
ds

= ηpy((y − x2ψ(x))eξ(x,y))2
dpx
ds

= ηp2y(y − x2ψ(x))(2xψ(x) + x2ψ′(x)− (y − x2ψ(x)) ∂ξ
∂x

(x, y))e2ξ(x,y)

dpy
ds

= −ηp2y(y − x2ψ(x))(1 + (y − x2ψ(x)) ∂ξ
∂y
(x, y))e2ξ(x,y).

(2)

The proof of the result splits in two steps, where we describe first K+
Z and then K−

Z .
In each step we proceed as follows: first we compute jets of the exponential map; second we try

to identify which geodesics intersect at the same time t; finally we check that the conjugate time
of these geodesics is bigger than t.

4.1 The upper part of the cut locus

We consider the geodesic starting from a point of Z with initial condition

x(0) = a > 0, y(0) = a2ψ(a), px(0) = −1, py(0) =
1

2aψ(a) + a2ψ′(a)
, (3)

i.e., the geodesic realizing locally the distance from Z and entering the upper domain. Taking
η = a, one can check that if x, y, px, py have orders 1, 2, 0,−1 in η respectively, then the dynamics
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has the same or higher orders. As a consequence, since the initial conditions respect these orders,
one can compute jets with respect to η of the solution of system (2) under the form

x(s) = ηx0(s) + η2x1(s) + η3x̄(η, s) px(s) = px0(s) + ηpx1(s) + η2p̄x(η, s)
y(s) = η2y0(s) + η3y1(s) + η4ȳ(η, s) py(s) = η−1py0(s) + py1(s) + ηp̄y(η, s)

where x̄, ȳ, p̄x, p̄y are smooth functions. Using (3), the initial conditions are given by

x0(0) = 1, x1(0) = 0, px0(0) = −1, px1(0) = 0
y0(0) = 1 y1(0) = ψ′(0), py0(0) =

1
2 , py1 = −3

4ψ
′(0),

and from system (2) we easily get

x0(s) = 1− s, x1(s) ≡ 0, y0(s) ≡ 1, y1(s) ≡ ψ′(0),

whence
x(t) = a− t+ a3x̄(a, t/a), y(t) = a2 + a3ψ′(0) + a4ȳ(a, t/a).

Similarly, the solution of (1) with initial condition

x(0) = a < 0, y(0) = a2ψ(a), px(0) = 1, py(0) =
1

2aψ(a) + a2ψ′(a)
, (4)

satisfies
x(t) = a+ t+ a3x̄(a, t/a), y(t) = a2 + a3ψ′(0) + a4ȳ(a, t/a).

This allows to prove that, for any c > 0, at t fixed, ∂x(t)
∂a

> 1
2 for 0 < | t

a
| < c and a small enough.

Hence two geodesics starting with two initial conditions a and ā of the same sign do not intersect
at time t if a and ā are small enough and | t

a
| and | t

ā
| are less than c.

For what concerns the conjugate locus, the Jacobian of the map (a, t) 7→ (x(t), y(t)) is 2a +
3a2ψ′(0) + a3Ξ(a, t

a
) where Ξ is a smooth function. This allows to conclude that for t

a
< c and a

small enough, the Jacobian is nonzero. Hence t is not a conjugate time.
Moreover, we are going to prove that a geodesic with an initial condition a > 0 small enough

intersects exactly one geodesic with an initial condition ā < 0 of the same length at t ∼ a. Hence,
the upper part of the cut locus generated by the geodesics corresponding to small a is exactly the
set corresponding to the intersection of geodesics described below.

If two geodesics intersect at the same time, one with a > 0 and the other with ā < 0, then

a2 + a3ψ′(0) + o(a3) = ā2 + ā3ψ′(0) + o(ā3),

hence ā = −a− a2ψ′(0) + o(a2), the cut time is tcut = a+ 1
2a

2ψ′(0) + o(a2) and the cut point is

xcut = −ψ
′(0)

2
a2 + o(a2), ycut = a2 + o(a2). (5)

It is easy to see that when the two geodesics intersect, the corresponding fronts are transverse to
each other whence the upper branch of the cut locus from Z is a smooth curve, in a sufficiently
small neighborhood of (0, 0). From (5) we deduce moreover that the tangent vector to K+

Z at (0, 0)
is (−ψ′(0)/2, 1), which does not belong to the distribution at (0, 0).
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4.2 The lower part of the cut locus

Reasoning as in section 4.1, we consider the geodesic starting from a point of Z with initial condition

x(0) = a > 0, y(0) = a2ψ(a), px(0) = 1, py(0) = − 1

2aψ(a) + a2ψ′(a)
, (6)

i.e., the geodesic realizing locally the distance from Z and entering the lower domain. Taking
η =

√
a, one can check that if x, y, px, py have orders in η higher or equal to 1, 3, 0,−2, respectively,

then the dynamics has the same or higher orders. As a consequence, since the initial condition
respects these orders, one can compute jets with respect to η of the solution of system (2) under
the form

x(s) = ηx0(s) + η2x1(s) + η3x̄(η, s) px(s) = px0(s) + ηpx1(s) + η2p̄x(η, s)
y(s) = η3y0(s) + η4y1(s) + η5ȳ(η, s) py(s) = η−2py0(s) + η−1py1(s) + p̄y(η, s),

where x̄, ȳ, p̄x, p̄y are smooth functions. From the initial condition (6), we deduce

x0(0) = 0, x1(0) = 1, px0(0) = 1, px1(0) = 0,
y0(0) = 0, y1(0) = 1, py0(0) = −1

2 , py1(0) = 0,

and using system (2), the functions x0, x1, y0, y1, px0, px1, py0, py1 satisfy















ẋ0 = px0
ẏ0 = γ2py0x

4
0

ṗx0 = −2γ2py
2
0x

3
0

ṗy0 = 0















ẋ1 = px1
ẏ1 = γ2(py1x

4
0 − 2py0x

2
0(y0 − 2x0x1 − αx30))

ṗx1 = γ2py0x0(−4py1x
2
0 + 2py0y0 − 6py0x0x1 − 5αpy0x

3
0)

ṗy1 = γ2py0x
2
0

(7)

where γ = eξ(0,0) and α = ψ′(0) + ∂ξ
∂x

(0, 0). Thus py0 ≡ −1
2 and one can prove (see [2, 10]) that

x0(s) = −
√
2√
γ
cn (K +

√
γs),

y0(s) = − 2

3
√
γ
(
√
γs+ 2sn (K +

√
γs)cn (K +

√
γs)dn (K +

√
γs)),

where K is the complete elliptic integral of the first kind of modulus 1√
2
, and cn , sn and dn

denote the classical Jacobi functions of modulus 1√
2
. Recall that the Jacobi functions cn , sn are

4K-periodic, when dn is 2K-periodic.
Denote by x10, y10, px10, py10 the solution of the second system in (7) with α = 0. Define

g1, g2, g3, g4 by
x1 = x10 + αg1, px1 = px10 + αg3,
y1 = y10 + αg2, py1 = py10 + αg4.

It is easy to see that the gi satisfy















g4 ≡ 0
ġ1 = g3
ġ2 = −γ2x30(2g1 + x20)
ġ3 = −1

4γ
2x20(6g1 + 5x20),

(8)
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and the initial conditions are g1(0) = g2(0) = g3(0) = 0. Notice moreover that, if

(x0, y0, px0, py0, x10, y10, px10, py10, g1, g2, g3)

is the solution of (7), (8) with initial condition (0, 0, 1,−1/2, 1, 1, 0, 0, 0, 0, 0) then the solution of
(7), (8) with initial condition (0, 0,−1,−1/2,−1, 1, 0, 0, 0, 0, 0) is

(−x0, y0,−px0, py0,−x10, y10,−px10, py10, g1,−g2, g3),

which is a geodesic starting from a point of Z with a < 0.

Now, we are going to prove that it exists δ > 0 such that if η 6= 0 is small enough and
0 < t

η
< 2K√

γ
+ δ then, at t fixed,∂x(t)

∂a
> 0. This implies in particular that two geodesics with

initial conditions a and ā of the same sign do not intersect at t if a and ā are small enough and
0 < t

η
< 2K√

γ
+ δ.

In fact
∂x(t)

∂η
= x0(

t

η
)− t

η
ẋ0(

t

η
) + η(2x1(

t

η
)− t

η
ẋ1(

t

η
)) + η2xr(η,

t

η
)

where xr is a smooth function. Now, the function f : u 7→ x0(u)−uẋ0(u) is such that f(0) = 0 and

f ′(u) = −uẍ0(u) =
1

2
uγ2x30(u) > 0 for u ∈]0, 2K√

γ
[.

Hence, for ǫ small enough, it exists δ such that f(u) > ǫ for u ∈]δ, 2K√
γ
+ δ[. Which implies that if

η is small enough and δ < t
η
< 2K√

γ
+ δ, then ∂x(t)

∂η
> 0. For 0 < t

η
< δ (possibly reducing δ and η),

since 2x1(
t
η
)− t

η
ẋ1(

t
η
) = 2 for t = 0, we have that ∂x(t)

∂η
> 0.

This implies that two geodesics corresponding to initial conditions a and ā of the same sign
such that η is small enough cannot intersect at the time t satisfying 0 < t

η
< 2K√

γ
+ δ.

For what concerns the conjugate locus, one can compute that the Jacobian of (η, s) 7→ (x(s), y(s))
is η3(J0(s) + ηJ1(s) + η2J2(s, η)), where J1(s) = x0(s)ẏ0(s) − 3y0(s)ẋ0(s), J1(0) = −4sign(ẋ0(0)),
and J2 is a smooth function. It was proven in [11] that J0 is nonvanishing between 0 and s̄ with s̄
strictly bigger than 2K/√γ. Moreover J1(0) has the same sign as the function J0 on the interval
]0, s̄[. This allows to conclude that exists δ > 0 such that the Jacobian is nonvanishing on the
interval [0, 2K√

γ
+ δ[. This allows to conclude that if t

η
< 2K√

γ
+ δ and a small enough, t is not a

conjugate time.

Now, for an a > 0 small enough, we want to prove that there exists exactly one ā < 0 such that
the geodesics starting with the initial conditions a and ā are optimal until their intersection at a
time t satisfying 0 < t

η
< 2K√

γ
+ δ. This will allow to conclude on the form of the local cut locus

from Z. In order to do that, we start by finding the good candidate.
For a > 0, the corresponding geodesic parametrized by s is

x+(s) = ηx0(s) + η2(x10(s) + αg1(s)) + o(η2),

y+(s) = η3y0(s) + η4(y10(s) + αg2(s)) + o(η4),

when for ā < 0 it is

x−(s) = −ηx0(s) + η2(−x10(s) + αg1(s)) + o(η2),

y−(s) = η3y0(s) + η4(y10(s)− αg2(s)) + o(η4).
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Let us estimate these geodesics for t0 =
2K√
γ
η0, η+ = η0+c+η

2
0+o(η

2
0) and η− = η0+c−η20+o(η

2
0).

One computes easily that

s+ =
2K√
γ
(1− c+η0 + o(η0)),

s− =
2K√
γ
(1− c−η0 + o(η0)),

and

x+(t0) = η20(c+
2K√
γ
+ x10(

2K√
γ
) + αg1(

2K√
γ
)) + o(η2),

y+(t0) = −η30
4K
3
√
γ
+ η40(−

4Kc+√
γ

+ y10(
2K√
γ
) + αg2(

2K√
γ
)) + o(η4),

x−(t0) = η20(−c−
2K√
γ
− x10(

2K√
γ
) + αg1(

2K√
γ
)) + o(η2),

y−(t0) = −η30
4K
3
√
γ
+ η40(−

4Kc−√
γ

+ y10(
2K√
γ
)− αg2(

2K√
γ
)) + o(η4).

Hence, these two geodesics intersect for

c+ =
√
γ
αg2(

2K√
γ
)− 2x10(

2K√
γ
)

4K ,

c− = −√
γ
αg2(

2K√
γ
) + 2x10(

2K√
γ
)

4K .

The corresponding point is

xint(t0) = η20α
2g1(

2K√
γ
) + g2(

2K√
γ
)

2
+ o(η2),

yint(t0) = −η30
4K
3
√
γ
+ o(η3),

and the intersection time satisfies

t0
η+

=
2K√
γ
(1− c+η+o(η+)) <

2K√
γ
+ δ (9)

for a small enough.
The inequality (9) proves that locally a geodesic cannot loose optimality by reaching the con-

jugate locus or by intersecting a geodesic with an initial condition a of the same sign.
We claim that the two geodesics are optimal until time t0. The idea of the proof is that if

one of the two geodesic looses optimality at t̄ < t0, then there exists another geodesic optimal
until t̄ intersecting it at t̄. But if this is the case, this new geodesic has lost optimality before
by computation similar to the one giving rise to the inequality (9). As a consequence of these
arguments, we can conclude that (xint(t0), yint(t0)) is a cut point.

One can check that 2g1(
2K√
γ
) + g2(

2K√
γ
) 6= 0 which means that this lower part of the cut is half

a cusp. Finally the cut is locally a curve since the fronts corresponding to a > 0 and a < 0 are
transverse at the cut points.
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5 Proof of Theorem 1 and of Proposition 6

In this section we prove the existence of a crest of the curvature passing through a tangency point
q and satisfying the following conditions: i) it is smooth, ii) it has a tangent direction which is
transverse to the distribution at q, iii) it admits a canonical parametrization.

Choose a coordinate system as in Section 4 for which we have a local representation satisfying
ψ(0) = 1. By construction, K is well defined outside the singular set Z.

The crests or valleys of K are implicitly defined by the equation

G(∇(||∇K||2), (∇K)⊥) = 0. (10)

Computing the left hand side of equation (10), we find that

G(∇(||∇K||2), (∇K)⊥) =
e2ξ(x,y)h(x, y)

(y − x2ψ(x))8
,

where h is a smooth function. Hence, equation (10) is equivalent to h(x, y) = 0. The development
of h at the point (0, 0) is

h(x, y) = C
(

y4(10x+ y(3ψ′(0)− 2ξx(0, 0))) +

6
∑

i=0

ai(x, y)x
iy6−i

)

,

where C is a nonzero constant and ai are smooth functions. Let us show that there exists a smooth
function b : I → R defined on a neighborhood I of 0 such that after the coordinate change

X = 10x + y(3ψ′(0)− 2ξx(0, 0)) − b(y)y2, Y = y,

we have h(x(X,Y ), y(X,Y )) = Xh(X,Y ). In the new coordinate system, we have

h(x(X,Y ), y(X,Y )) = C(Y 4X+F (X,Y )), where F (X,Y ) =
Y 6

10
b(Y )+

6
∑

i=0

ai(x(X,Y ), Y )(x(X,Y ))iY 6−i.

In order X to be factorizable in F , we require that F (0, Y ) ≡ 0. Since F (0, Y ) = Y 6R(b(Y ), Y ),
where

R(b(Y ), Y ) =
b(Y )

10
+

6
∑

i=0

ai(x(0, Y ), Y )

10i
(−3ψ′(0) + 2ξx(0, 0) − b(Y )Y )i,

it follows that F (0, Y ) ≡ 0 if and only if there exists a smooth function b defined on a neighborhood

of 0 such that R(b(Y ), Y ) ≡ 0. Let b = −10
∑6

i=0
ai(0,0)
10i

(−3ψ′(0) + 2ξx(0, 0))
i. Then, since R(b, Y )

is smooth, R(b, 0) = 0, Rb(b, 0) = 1/10, we apply the Inverse Function Theorem to find a smooth
function b(Y ) with the properties above. Therefore, coming back to the (x, y) coordinates we have
shown that

h(x, y) = C(10x+ y(3ψ′(0) − 2ξx(0, 0)) + b(y)y2)(y4 + F̃ (x, y)),

where F̃ is smooth and b is the function built above. The last equation implies that the curve
{(x, y) | 10x + y(3ψ′(0) − 2ξx(0, 0)) + b(y)y2 = 0} is a connected component of the set defined by
equation (10), it is smooth, it passes through (0, 0) and its tangent line at (0, 0) is

x =
1

10
(2ξx(0, 0) − 3ψ′(0))y,
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that is transverse to the distribution at (0, 0).
We are left to find a canonical parametrization on the given curve. Notice that the limit of

∇K as (x, y) goes to (0, 0) does not exist, since the curvature does not converge at the tangency
point. Nevertheless, it happens that if (x, y) tends to (0, 0) along a curve that approaches the origin
with tangent direction (2/10ξx(0, 0)− 3/10ψ′(0), 1), then ∇K converges. Hence, we can choose the
parametrization s 7→ Γ(s) = (x(s), y(s)) such that G(∇K, Γ̇(s)) ≡ 1, equivalently

−∂xK(x(s), y(s))(y(s)(3ψ′(0)− 2ξx(0, 0)) + b(y(s))y(s)2) + 10∂yK(x(s), y(s))ẏ(s) = 10.

Starting from the parametrized curve s 7→ Γ(s) and following the procedure in the proof of Lemma
1 in [3] (here we do not assume ψ(0) = 1), we end up with a normal form (F3) where the functions
ψ, ξ satisfy

2ξx(0, 0)ψ(0) − 3ψ′(0) = 0.

�

6 Appendix

In this section we prove Proposition 3. Let q ∈ M be such that ∇K(q) 6= 0. In this case, the level
set {p ∈ M | K(p) = K(q)} ∩ U is a smooth 1-dimensional submanifold of M . Using the local
representation (F1), one gets

∇K(x, y) =
(

∂3xφ(x, y)− 2∂xφ(x, y)∂
2
xφ(x, y), e

2φ(x,y)
(

−2∂xφ(x, y)∂x∂yφ(x, y) + ∂2x∂yφ(x, y)
) )

.

Requiring that the level set of the curvature passing through q is the vertical axis, one gets that
the second coordinate of ∇K(0, y) is zero. Hence we get

−2∂xφ(0, y)∂x∂yφ(0, y) + ∂2x∂yφ(0, y) ≡ 0.

Requiring that the vertical axis is parameterized by arclength, one gets

φ(0, y) ≡ 0.

Assume now that q is such that ∇K(q) = 0. As in the previous section, we are looking for solutions
to the equation

G(∇(||∇K||2), (∇K)⊥) = 0. (11)

Consider an orthonormal frame of the type (F1). The jet of the left hand side of equation (11) is

h(x, y) = h0x
2 + h1xy − h0y

2 +

3
∑

i=0

ci(x, y)x
iy3−i,

where ci are smooth functions and hi are real numbers depending on the values of φ and its
derivatives until order 4 at (0, 0). We study the generic case (h0, h1) 6= (0, 0). In this case h
has a saddle in (0, 0) and the equation h(x, y) = 0 defines locally two smooth curves which are
respectively the crest and the valley of the curvature. Requiring that the vertical axis is a crest
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or a valley, we have h0 = 0. Finally one can parameterize the crest by arclength. The explicit
expression of h0 is

h0 = 2e4φ ( 4∂2x∂
1
yφ

3∂3xφ− 4∂1x∂
2
yφ∂

2
x∂yφ∂

3
xφ

2 + 8∂xφ
3(∂2x∂yφ

3 − ∂x∂
2
yφ∂

2
x∂yφ∂

3
xφ)−

− 2∂2xφ
2∂2x∂

2
yφ∂

3
x∂yφ+ 2∂x∂

2
yφ∂

2
xφ∂

3
xφ∂

3
x∂yφ− ∂3x∂yφ

3 + ∂2x∂
2
yφ∂

3
x∂yφ∂

4
xφ−

− 2∂x∂yφ
2∂3x∂yφ(4∂

2
xφ

2 + ∂4xφ) + 4∂x∂yφ
3(∂3xφ

2 + ∂2xφ∂
4
xφ) +

+ 2∂x∂yφ(2∂
2
xφ

3∂2x∂
2
yφ− 2∂x∂

2
yφ∂

2
xφ

2∂3xφ+ 2∂2x∂
2
yφ∂

3
xφ

2 − 5∂2x∂yφ∂
3
xφ∂

3
x∂yφ+ (12)

+ 3∂2xφ∂
3
x∂yφ

2 + (∂2x∂yφ
2 − ∂2xφ∂

2
x∂

2
yφ+ ∂x∂

2
yφ∂

3
xφ)∂

4
xφ) +

+ 4∂xφ
2(−3∂2x∂yφ

2∂3x∂yφ+ ∂x∂
2
yφ∂

3
xφ∂

3
x∂yφ+ ∂2x∂yφ(∂

2
x∂

2
yφ∂

3
xφ+ ∂x∂

2
yφ∂

4
xφ)) +

+ ∂xφ(2∂
3
x∂yφ(3∂

2
x∂yφ∂

3
x∂yφ− ∂x∂

2
yφ∂

4
xφ)− 2∂2x∂

2
yφ(∂

3
xφ∂

3
x∂yφ+ ∂2x∂yφ∂

4
xφ)) ) ,

where all the derivatives of φ are computed at (0, 0). �
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laser-induced population transfer for two- and three-level quantum systems. J. Math. Phys.,
43(5):2107–2132, 2002.

[15] U. Boscain, G. Charlot, R. Ghezzi, and M. Sigalotti. Lipschitz Classification of Two-
Dimensional Almost-Riemannian Distances on Compact Oriented Surfaces. submitted to Jour-
nal of Geometric Analysis, 2010.

[16] U. Boscain and M. Sigalotti. High-order angles in almost-Riemannian geometry. In Actes de
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