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Abstract— Two dimensional almost-Riemannian geome- as in (1) only if the Riemannian structure admits a
tries are metric structures on surfaces defined locally by a global orthonormal frameX andY’, implying thatM is
Lie bracket generating pair of vector fields. We study the parallelizable. More in general¥ andY are parallel
relation between the topology of an almost-Riemannian . . .
structure on a compact oriented surface and the total on a _setZ c M _(calle_d singular locug, which _'S
curvature. In particular, we analyse the case in which there ~generically a one-dimensional embedded submanifold of
exist tangency points, i.e. points where two generators of M (possibly disconnected). Metric structures that can
the distribution and their Lie bracket are linearly depen-  pe definedlocally by a pair of vector fields(X,Y)
dent. The main result of the paper is a characterization through (1) are callecalmost-Riemannian structures

of trivializable oriented almost-Riemannian structures m More preciselv an almost-Riemannian structure can be
compact oriented surfaces in terms of the topological P y

invariants of the structure. Moreover, we present a Gauss- S€€n as an atlas of local orthonormal frames

Bonnet formula for almost-Riemannian structures with 3 L

tangency points. S={(Q" X" Y )} yer,

where{Q*},c is an open covering o/ and, for every

we I, (X, YH)is apair of smooth vector fields defined
Let M be a two-dimensional smooth manifold. Aon A7, whose restriction td2* satisfies the Lie bracket

Riemannian distance aif can be seen as the minimum-generating condition. Moreover, for evepy v € I and

time function of an optimal control problem where ad-for everyq € Qr N QY, we assume that there exists an
missible velocities are vectors of norm one. The contrabrthogonal matrixR** (q) = (R (q)) € O(2) such

|. INTRODUCTION

problem can be written locally as that X/ (q) = 2321 Réf}”(q)X;’(q). .|f each R*"(q)
G=uX(q)+vY(q), w2+ <1, (1) belongs toSO(2), we say thatS is orientable We say

o that an almost-Riemannian structuretisializable if

by fixing an orthonormal frame¢X,Y’). there existX andY such thatS U {(M, X,Y)} is stil

An almost-Riemannian structure generalizes a Riean almost-Riemannian structure. The singular logus
mannian one by allowing{’ and Y to be collinear at s the set of points ofi/ at which the rank-varying dis-
some points. If the paitX,Y’) is Lie bracket generating, tripution ¢ — A(q) = spa{ X*(q),Y*(q) : q € Q"}

i.e., if is one dimensional. An almost-Riemannian structure is
Riemannian if and only iZ = (.
span{ X (q),Y (¢q), [X,Y](q), [X,[X,Y v b =Ty M ) g . .
pan{X(a), Y(),| I(@), 1%, | ).} ! The first example of genuinely almost-Riemannian
at everyqg € M, then (1) is completely controllable and structure is provided by the Grushin plane, which is the
the minimum-time function still defines a continuousalmost-Riemannian structure & defined by the or-
distanced on M. Notice that a Riemannian distancethonormal frameX (z,y) = (1,0) andY (z,y) = (0, x).
can be globally defined od/ by a control problem The model was originally introduced in the context of
hypoelliptic operator theory?], [?] (see also 7], [?]).
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The notion of almost-Riemannian structure was in- Under generic assumptions, the singular locufas
troduced in P]. In that paper, an almost-Riemannianthe following propertiesi(i) Z is an embedded one-
structure is defined as a locally finitely generated Lialimensional submanifold o#/; (ii) the pointsq € M
bracket generating°° (M )-submoduleA of Vec(M), at which Ay(¢) is one-dimensional are isolatedii)
the space of smooth vector fields afi, endowed with As(q) = T, M for everyq € M.

a bilinear, symmetric magr : A x A — C* (M) which We will say that S satisfies (HO) if properties
is positive definite (in a suitable sense). A pair of vectofi),(ii),(ii) hold true. If this is the case, a point of
fields (X,Y) in A is said to be orthonormal on some M is calledordinary if A(q) = T,M, Grushin point
open set) if G(X,Y)(¢q) = 0 and G(X,X)(q) = if A(q) is one-dimensional andk,(q) = T,M, i.e. the
G(Y,Y)(q) = 1 for every ¢ € . This definition is distribution is transversal t&, and tangency pointf
equivalent to the one given above in terms of an atlads(g) is one-dimensional, i.e. the distribution is tangent
of orthonormal frames. to Z. The set of ordinary points i3/ \ Z, and if S

This paper is a continuation of?], where we pro- satisfies(HO), then the distribution is transversal to the
vided a characterization of generic almost-Riemanniagingular locus at every point except for finitely many.
structures by means of local normal forms, and wé/loreover, if (€2, X,Y") is a local generator oA such
proved a generalization of the Gauss-Bonnet formuldhat$2\ Z has exactly two components, thei, Y") has
The main result consists of a characterization of trividifferent orientations on each of them.
alizable generic oriented almost-Riemannian structureghe following proposition is a standard corollary of the
on compact oriented surfaces. Moreover, we generalizeansversality theorem. It formulates generic properties
in a sense the Gauss-Bonnet formula 9f o almost- of a 2-ARS in terms of the flag of the distributiah.
Riemannian structures with tangency points. Proposition 1 ([]): Let M be a two-dimensional

The structure of the paper is the following. First ofmanifold. Then a 2-ARS onV/ generically satisfies
all, in Section Il we recall some results contained ircondition(HO0).

[?7]. Then, in Section IIl the statement of the main resul®@RSs satisfying hypothesiéH0) admit the following
concerning the characterization of trivializable almostlocal normal forms.

Riemannian structures is given. Moreover, we outline Theorem 1 (P]): Given a 2-ARSS satisfiyng(HO),
the proof of the theorem by applying two lemmas. Weor every pointg € M there exist a neighborhodd of g
then discuss the concept of integrability with respect t@nd an orthonormal frameX, Y') onU such that up to a
the Riemannian density induced by an oriented 2-ARSMooth change of coordinates definedéng = (0, 0)

on the set of ordinary points. In particular, in Section2nd (X,Y’) has one of the forms

IV-A we provide pumerical simulations support?ng the 1y X(z,y) = (1,0), Y(z,y) = (0,e?@v),
conjecture that, in presence of tangency points, the B B (1)
integral of the curvature defined ir?][as a limit of (F2)  X(z,9)=(1,0), Y(z,y)=(0,ze ),
integrals does not converge. In Section IV-B we define(F3)  X(z,y) = (1,0),

the concept of3-scale S-integrability which is useful Y(x,y) = (0, (y — x%(l«))ef(w)),

to formulate the other result of the paper, which is a .
generalization of the Gauss-Bonnet formula givendh [ whereg, £ andy are smooth real-valued functions such
in presence of tangency points. As a direct consequenf?2t #(0, y) = 0 and¥(0) > 0. _

of the two results of the paper, in Section V we completd '€ Main result of 7] is an extension of the Gauss-

the analysis of the relation between the integral of thE©nnet theorem for orientable almost-Riemannian struc-
curvature and the topological invariants of an almosttures on orientable manifolds, under the hypothesis that
Riemannian structure. there are not tangency points. More precisely, denote

by K : M\ Z — R the Gaussian curvature. The first
difficulty in order to extend the Gauss-Bonnet formula is
to give a meaning td,, K dA, the integral ofK” on M

sequence of submodulés=A; C Ay C --- C A,, ¢  the Riemannian metric of/ \ Z. The idea is to replace

Il. PRELIMINARIES

... defined through the recursive formula K dA with a signed version of it. Fix an orientation on
M and letM T (respectivelyM ~) be the subset af/\ Z
A1 = A+ [A, A were X* points on the right (resp. on the left) af#

with respect to this orientation, and defidel, = dA
Denote byA,,(¢q) the set{V(q) |V € A, }. on Mt anddAs; = —dA on M~. The main goal of 7]



was to prove the existence and to assign a value to tli&emannian metrigg, on M. Consider an embedded

limit closed surfaceNV c M with the induced orientation.
) Suppose)N is nonempty andl’ is a one-dimensional
Eh{% " K(q)dAs, (2)  distribution on &N. We call number of rotationsof

T on a connected componemt’ of 0N the degree
where M., = {q € M | d(g,Z) > e} andd(-,-) is of any continuous (and therefore smooth) choite
the distance globally defined by the almost-Riemanniap, — R /x7Z of the g,-angle betweerl}, W and T (p),
structure on)M. We say thatK is S-integrableif the  computed with respect to the orientation1df induced
limit (2) exists and is finite. In this case we denotepy N. We denote it byrnx (Y, W) and we define
it by [,, KdA,. When S has no tangency point& (T, 9N) as the sum ofy (T, W) asW varies among
happens to bé-integrable and/,, K dA, is determined the connected components@h. Using this definition,
by the topology ofM/* and M ~. This result, stated in we can associate to any oriented 2-ARSand any
Theorem 2 can be seen as a generalization of Gausggnnected componeiit’ of Z the integerr,;« (A, W).
Bonnet formula to ARSs. We denoter(S) the numberry+ (A, Z).
Theorem 2 (P]): Let M be a compact oriented two-  As a direct consequence of Theorem 3 and of the
dimensional manifold, endowed with an oriented 2-ARSimple remark thag (M) + x(M~) = x(M) is even
S for which condition(HO) holds true. Assume that we obtain that ifS is trivializable thenr(S) is even.
S has no tangency points. Théki is S-integrable and
Sy KdAg = 2m(x(MT) — x(M™)). The proof of the sufficiency of the condition( A/ ) —
Once applied to the special subclass of Riemanniap(M ~) + 7(S) = 0 is rather technical (for details see
structures, such a result simply states that the integrg#]). It consists of the construction of a globally defined
of the curvature of a parallelizable compact orientedector field X such thatX € A and X has only non-
surface (i.e., the torus) is equal to zero. In a senségegenerate zeros lying ig. First, we defineX on a
in the standard Riemannian construction the topologtubular neighborhood of in such a way thatX € A
of the surface gives a constraint on the total curvaand has only a finite humber of non-degenerate zeros
ture through the Gauss-Bonnet formula, whereas for dying in Z, the algebraic number of zeros to be found
almost-Riemannian structure induced by a single palater. After that, we extend’ to the entire manifold. The
of vector fields the total curvature is equal to zero anthypothesisy(M ™) — x(M~) + 7(S) = 0 allows us to
the topology of the manifold constrains the metric to bdind an extension without introducing further zeros. This
singular on a suitable set. can be done by assigning to each connected component
of Z a suitable integer representing the algebraic number
of zeros of X on that component. Taking into account
Our objective is to complete the analysis in the more¢he topological contraints on the indeces of zeros of
complicated case in whic§ has tangency points. The vector fields, to find these integers one has to solve a
main result concerns the relation between the trivilinear system where coefficients depend on the Euler
alizability of an almost-Riemannian structure and theharacteristic of the connected component8{Z and
topological properties of the distribution and the singulaon the number of rotations ok along each connected
locus associated to it. This theorem generalizes theomponent ofZ.
condition x(M*) = x(M ™), which is necessary (see The construction of a solution to this system is based
Lemma 5 of P]) for an almost-Riemannian structure on a correspondence between two-dimensional almost-
without tangency points to be trivializable, to the casé&kiemannian structures and bipartite graphs. Indeed, to
in which tangency points exist. an almost-Riemannian structure corresponds the bipar-
Theorem 3:Let M be a compact oriented two- tite graph whose vertices and edges are the connected
dimensional manifold endowed with an oriented almostcomponents of\/ \ Z and Z, respectively. Two vertices
Riemannian structur§ satisfying the generic hypothesis M; and M, are connected by an edgg&, if and
(HO). ThensS s trivializable if and only ifx(M*) — only if Z, C M; N M,. The bipartite nature of
x(M~) + 7(S) = 0, where 7(S) is the number of the graph follows from the fact that a pair of vector
rotations of A on Z computed with respect to the fields generating\ changes orientation while crossing
orientation induced by/* on Z. Z, so thatZ = M+ N M~. There is a natural way
The integerr(S) is defined as follows. Take a global of labeling vertices and edges of the graph associated
notion of angle onT'M, independent ofS. Such an with an almost-Riemannian structure. Indeed, we assign
angle can be induced by any fixed, globally definedo each vertex\/; the numbery(M;) (whereyx denotes

IIl. CHARACTERIZATION OF TRIVIALIZABLE 2-ARS



the Euler characteristic of manifolds) and to each edge
Z,; the integerry,+ (A, Z,;). The graph associated &
is invariant under the action of diffeomorphisms bf
and this is why such graphs could be a useful instrument
for a classification of almost-Riemanian structures.

The graph associated to the almost-Riemannian struc-
ture can be used to assign to each connected compontent
of Z the suitable algebraic number of zeros of the
vector field X . The existence of an extension &f with
no further zeros is now a consequence of the choice
made on the location of zeros and of the condition
X(M*) = x (M) +7(S) = 0.

Once a vector field{ € A with non-degenerate zeros
lying in Z is constructed, we can assume it to have norm
one by applying Lemma 1 below (for the proof s&§) [

Lemma 1:Let I’ be a vector field such thay I’ €
A, ii) its zeros are non-degenerate and liedn Then
|[F'| = \/G(F, F) is a never vanishing smooth function. rig. 1. Regions2* where to apply Riemann Gauss-Bonnet formula
In particular, FF = F/|F| is a well defined vector field
of norm one.

Finally, to find a generator oA with norm one and
orthogonal toX it is sufficient to rotateX in the sense
of the following Lemma (see Lemma 4 if?]).

Lemma 2:Let F; be a vector field such that F; €
A, ii) |F1| = 1. Let, moreoverf : M — R/27Z be a
smooth map. Then there exists a vector fiélgd such
that Fr € A, |Fy| = 1 and G(F1, F>) = cos6 on M.
In particular, wher¥ = /2, (F}, F») is an orthonormal
frame of S.

does not converge astends to zero.

From the proof of Theorem 2 we know that far from
tangency points the integral of geodesic curvature along
OMZ and M offset each other foe going to zero.
Hence, to understand whether the presence of a tangency
point may lead to not&-integrability of K it is sufficient
to compute the geodesic curvatureddf/- andoM " in
a neighborhood of such a point. More precisely consider
the almost-Riemannian structure on the plane for which

) . (1,0) and (0,y — 2?) is an orthonormal frame. For this
The proof of the necessity of the conditiquid/ ™) —

( _ system one hag = dz? + (y — 2%)~2dy?, and
xX(M~) + 7(S8) = 0 is based on the existence of a
global orthonormal frame whose elements have only K- —2 (327 +y)
non-degenerate zeros lying i&. Once a global or- (22 _y)2
thonormal frame exists, one defines a suitable smoo
angley : M — R/27Z such that the rotation of the
given frame in the sense of Lemma 2 by angléhas

motice that, in contrast with the behavior of the cur-
vature in the Grushin plane (se€]), in this case

. ; limsup,_, o0 K(¢) = oo, while we still have
the desired property. For more details s&€g [ liminf, o) K (g) = —oo. By symmetry reasons, for
IV. S-INTEGRABILITY IN PRESENCE OF TANGENCY ~ €Very e > 0, the setsoM and OM_ are smooth

POINTS manifolds except at their intersections with the vertical
. ] ] axis z = 0, which is the cut locus for the problem of
A. Numerical simulations minimizing the distance frong = {(z,22) | z € R}.

As concerns the notion of integrability of the curva-Fix 0 < a < 1 and consider the two geodesics starting
ture with respect to the Riemannian density ah\ Z, from the point (a,a?) and minimizing (locally) the
it turns out that the hypothesis made i? pbout the distance fromZ. Let P™ and P~ be the two points
absence of tangency points is not just technical. Indeedlong these geodesics at distamckom Z. Denote by
in this section we provide some numerical simulations™ and~~ the portions ofd A/t and9M_ connecting
to support the conjecture that, in presence of tangendhe vertical axis to the point®* and P—, oriented as
points, in Figure 1.

/ KdA It is easy to approximate numerically™ and ~~

Jar s by broken lines, but the evaluation of the integral
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Fig. 2. Divergence of th&-integral of K
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of their geodesic curvatures is very unstable since its
computation involves the second derivative of the curve Fig. 3. The rectangular bokj .
parameterized by arclength. To avoid this problem, we

rather apply the Riemannian Gauss-Bonnet formula on

the regionsQ™ and Q~ introduced in Figure 1. This  For 4, 4, sufficiently small, the rectanglé} , is

works better since the integral of the Gaussian curvatuifie subset of\/ containing the tangency poigt and
on QT and Q™ is numerically stable, and the integral having as boundary (see Figure 3)

of the geodesic curvature on horizontal and vertical

segments can be computed analytically (in particular it V5, ([=02, 2]) U -6, 5,1 (62)U
is always zero on horizontal segments). Uy_s, ([=02, d2]) Ur_s,,5,(—02). (3)
Figure 2 shows the value of Let M. 5,5, = M.\ S BL, ;.. We say thatk is
3-scaleS-integrable (3-S-integrablefor short) if
€ (/ Kyds — / Kgds>
s 7" lim lim lim KdA, 4)

51 —0062,—0e—0 M. s, s
161,02

for « = 0.1 and e varying in the interval[0.01,0.04].
The graph seems to converge agends to zero to a exists and is finite. In this case we denote such a limit
nonzero constant, strongly hinting at the divergence dfy gﬁM KdA,. Notice that ifS has not tangency points,
fME KdA,. then the concept af-integrability and 3S-integrability
Similar pictures have been obtained for ARS&BA coincide. This more general notion of integrability is

generated by1, 0), (0, y—x?—cz3) with some constant used in next theorem which generalizes Theorem 2.

c different from zero. Theorem 4:Let M be a compact oriented two-
_ _ dimensional manifold. For an oriented almost-
B. Gauss-Bonnet formula with tangency points Riemanian structure onM satisfying the generic

One possible explanation of the divergence of th@ypothesigHO), K is 3-scaleS-integrable and
limit (2) is the interaction between different orders N 3
in the asymptotic expansion of the almost-Riemannian s KdAs =2m(x(M™) = x(M™) +7(5)).
distance. To avoid this interference, we define a 3-scalehe order in which the limits are taken is important.
integral of the curvature. This can be done by introducihdeed, if the order is permuted, then the result given
ing around each tangency poigt, i € {1,...,ms}, a in Theorem 4 does not hold anymore. Recall that the
two parameters “rectangle shaped” neighborhﬂjgigé2 normal form (F3) is not totally intrinsic, since the func-
(61 andd, playing the role of lengths of the sides of thetions 1) and ¢ depend on the choice of a parametrized
rectangle) built as follows. We consider a parameterizesimooth curve passing through the tangency paint
curve(—1,1) 3 s — w(s) passing through the tangencyand transversal td\(q,). However, the result given in
point w(0) = ¢; and transversal to the distribution. We Theorem 4 does not depend on this choice. An inter-
then consider, for each € (—1,1), the geodesicy, esting question is whether a canonical way of choosing
(parameterized by arclength) such that0) = w(s) these manifolds and their parameterizations exists. This
and minimizing locally the distance frofw(s) : s € is related to the problem of finding intrinsic normal
(=1,1)}. forms for Grushin and tangency points.



The proof of Theorem 4 (for details se@) is based
on a result given inf] which is a Gauss-Bonnet formula
for two-dimensional almost-Riemannian structures on
admissible domains with boundary.

V. CONCLUSIONS

Theorems 3 and 4 allow us to complete the analysis
between the integral of the curvature and the topology
of the manifold for two-dimensional almost-Riemannian
structures (see Corollary 1 in?]). Indeed, as a con-
sequence of Theorems 3 and 4 we get the following
corollary.

Corollary 1: Let M be a compact oriented two-
dimensional manifold. For an oriented almost-
Riemannian structureS on M satisfying the generic
hypothesigHO0) we havetfi, KdA, = 0 if and only if
S is trivializable.

In particular, if S has not tangency points then
fM KdA, =0 if and only if S is trivializable.



