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Abstract— Two dimensional almost-Riemannian geome-
tries are metric structures on surfaces defined locally by a
Lie bracket generating pair of vector fields. We study the
relation between the topology of an almost-Riemannian
structure on a compact oriented surface and the total
curvature. In particular, we analyse the case in which there
exist tangency points, i.e. points where two generators of
the distribution and their Lie bracket are linearly depen-
dent. The main result of the paper is a characterization
of trivializable oriented almost-Riemannian structures on
compact oriented surfaces in terms of the topological
invariants of the structure. Moreover, we present a Gauss-
Bonnet formula for almost-Riemannian structures with
tangency points.

I. I NTRODUCTION

Let M be a two-dimensional smooth manifold. A
Riemannian distance onM can be seen as the minimum-
time function of an optimal control problem where ad-
missible velocities are vectors of norm one. The control
problem can be written locally as

q̇ = uX(q) + vY (q) , u2 + v2 ≤ 1 , (1)

by fixing an orthonormal frame(X,Y ).
An almost-Riemannian structure generalizes a Rie-

mannian one by allowingX and Y to be collinear at
some points. If the pair(X,Y ) is Lie bracket generating,
i.e., if

span{X(q), Y (q), [X,Y ](q), [X, [X,Y ]](q), . . .} = TqM

at everyq ∈M , then (1) is completely controllable and
the minimum-time function still defines a continuous
distanced on M . Notice that a Riemannian distance
can be globally defined onM by a control problem
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as in (1) only if the Riemannian structure admits a
global orthonormal frameX andY , implying thatM is
parallelizable. More in general,X and Y are parallel
on a setZ ⊂ M (called singular locus), which is
generically a one-dimensional embedded submanifold of
M (possibly disconnected). Metric structures that can
be definedlocally by a pair of vector fields(X,Y )
through (1) are calledalmost-Riemannian structures.
More precisely an almost-Riemannian structure can be
seen as an atlas of local orthonormal frames

S = {(Ωµ, Xµ, Y µ)}µ∈I ,

where{Ωµ}µ∈I is an open covering ofM and, for every
µ ∈ I, (Xµ, Y µ) is a pair of smooth vector fields defined
onM , whose restriction toΩµ satisfies the Lie bracket
generating condition. Moreover, for everyµ, ν ∈ I and
for every q ∈ Ωµ ∩ Ων , we assume that there exists an
orthogonal matrixRµ,ν(q) = (Rµ,ν

i,j (q)) ∈ O(2) such
that Xµ

i (q) =
∑2

j=1 R
µ,ν
i,j (q)Xν

j (q). If each Rµ,ν(q)
belongs toSO(2), we say thatS is orientable. We say
that an almost-Riemannian structure istrivializable if
there existX andY such thatS ∪ {(M,X, Y )} is still
an almost-Riemannian structure. The singular locusZ
is the set of points ofM at which the rank-varying dis-
tribution q 7→ ∆(q) = span{Xµ(q), Y µ(q) : q ∈ Ωµ}
is one dimensional. An almost-Riemannian structure is
Riemannian if and only ifZ = ∅.

The first example of genuinely almost-Riemannian
structure is provided by the Grushin plane, which is the
almost-Riemannian structure onR2 defined by the or-
thonormal frameX(x, y) = (1, 0) andY (x, y) = (0, x).
The model was originally introduced in the context of
hypoelliptic operator theory [?], [?] (see also [?], [?]).
Notice that the singular locus is indeed nonempty, being
equal to they-axis. Another example of (trivializable)
almost-Riemannian structure has appeared in problems
of control of quantum mechanical systems (see [?], [?]).
In this caseM = S2 represents a suitable state space
reduction of a three-level quantum system while the
orthonormal generatorsX andY are two infinitesimal
rotations along two orthogonal axes, modeling the action
on the system of two lasers.



The notion of almost-Riemannian structure was in-
troduced in [?]. In that paper, an almost-Riemannian
structure is defined as a locally finitely generated Lie
bracket generatingC∞(M)-submodule∆ of Vec(M),
the space of smooth vector fields onM , endowed with
a bilinear, symmetric mapG : ∆×∆ → C∞(M) which
is positive definite (in a suitable sense). A pair of vector
fields (X,Y ) in ∆ is said to be orthonormal on some
open setΩ if G(X,Y )(q) = 0 and G(X,X)(q) =
G(Y, Y )(q) = 1 for every q ∈ Ω. This definition is
equivalent to the one given above in terms of an atlas
of orthonormal frames.

This paper is a continuation of [?], where we pro-
vided a characterization of generic almost-Riemannian
structures by means of local normal forms, and we
proved a generalization of the Gauss-Bonnet formula.
The main result consists of a characterization of trivi-
alizable generic oriented almost-Riemannian structures
on compact oriented surfaces. Moreover, we generalize
in a sense the Gauss-Bonnet formula of [?] to almost-
Riemannian structures with tangency points.

The structure of the paper is the following. First of
all, in Section II we recall some results contained in
[?]. Then, in Section III the statement of the main result
concerning the characterization of trivializable almost-
Riemannian structures is given. Moreover, we outline
the proof of the theorem by applying two lemmas. We
then discuss the concept of integrability with respect to
the Riemannian density induced by an oriented 2-ARS
on the set of ordinary points. In particular, in Section
IV-A we provide numerical simulations supporting the
conjecture that, in presence of tangency points, the
integral of the curvature defined in [?] as a limit of
integrals does not converge. In Section IV-B we define
the concept of3-scaleS-integrability which is useful
to formulate the other result of the paper, which is a
generalization of the Gauss-Bonnet formula given in [?]
in presence of tangency points. As a direct consequence
of the two results of the paper, in Section V we complete
the analysis of the relation between the integral of the
curvature and the topological invariants of an almost-
Riemannian structure.

II. PRELIMINARIES

The flag of a rank-varying distribution(M,∆) is the
sequence of submodules∆ = ∆1 ⊂ ∆2 ⊂ · · · ⊂ ∆m ⊂
· · · defined through the recursive formula

∆k+1 = ∆k + [∆,∆k].

Denote by∆m(q) the set{V (q) | V ∈ ∆m}.

Under generic assumptions, the singular locusZ has
the following properties:(i) Z is an embedded one-
dimensional submanifold ofM ; (ii) the pointsq ∈ M
at which ∆2(q) is one-dimensional are isolated;(iii)
∆3(q) = TqM for every q ∈M .

We will say that S satisfies (H0) if properties
(i),(ii) ,(iii) hold true. If this is the case, a pointq of
M is called ordinary if ∆(q) = TqM , Grushin point
if ∆(q) is one-dimensional and∆2(q) = TqM , i.e. the
distribution is transversal toZ, and tangency pointif
∆2(q) is one-dimensional, i.e. the distribution is tangent
to Z. The set of ordinary points isM \ Z, and if S
satisfies(H0), then the distribution is transversal to the
singular locus at every point except for finitely many.
Moreover, if (Ω, X, Y ) is a local generator of∆ such
thatΩ\Z has exactly two components, then(X,Y ) has
different orientations on each of them.
The following proposition is a standard corollary of the
transversality theorem. It formulates generic properties
of a 2-ARS in terms of the flag of the distribution∆.

Proposition 1 ([?]): Let M be a two-dimensional
manifold. Then a 2-ARS onM generically satisfies
condition (H0).
ARSs satisfying hypothesis(H0) admit the following
local normal forms.

Theorem 1 ([?]): Given a 2-ARSS satisfiyng(H0),
for every pointq ∈M there exist a neighborhoodU of q
and an orthonormal frame(X,Y ) onU such that up to a
smooth change of coordinates defined onU , q = (0, 0)
and (X,Y ) has one of the forms

(F1) X(x, y) = (1, 0), Y (x, y) = (0, eφ(x,y)),

(F2) X(x, y) = (1, 0), Y (x, y) = (0, xeφ(x,y)),

(F3) X(x, y) = (1, 0),

Y (x, y) = (0, (y − x2ψ(x))eξ(x,y)),

whereφ, ξ andψ are smooth real-valued functions such
that φ(0, y) = 0 andψ(0) > 0.
The main result of [?] is an extension of the Gauss-
Bonnet theorem for orientable almost-Riemannian struc-
tures on orientable manifolds, under the hypothesis that
there are not tangency points. More precisely, denote
by K : M \ Z → R the Gaussian curvature. The first
difficulty in order to extend the Gauss-Bonnet formula is
to give a meaning to

�
M
K dA, the integral ofK onM

with respect to the Riemannian densitydA induced by
the Riemannian metric onM \Z. The idea is to replace
K dA with a signed version of it. Fix an orientation on
M and letM+ (respectivelyM−) be the subset ofM\Z
wereXµ points on the right (resp. on the left) ofY µ

with respect to this orientation, and definedAs = dA
onM+ anddAs = −dA onM−. The main goal of [?]



was to prove the existence and to assign a value to the
limit

lim
εց0

�
Mε

K(q)dAs, (2)

whereMε = {q ∈ M | d(q,Z) > ε} and d(·, ·) is
the distance globally defined by the almost-Riemannian
structure onM . We say thatK is S-integrable if the
limit (2) exists and is finite. In this case we denote
it by

�
M
KdAs. When S has no tangency pointsK

happens to beS-integrable and
�

M
KdAs is determined

by the topology ofM+ andM−. This result, stated in
Theorem 2 can be seen as a generalization of Gauss–
Bonnet formula to ARSs.

Theorem 2 ([?]): Let M be a compact oriented two-
dimensional manifold, endowed with an oriented 2-ARS
S for which condition (H0) holds true. Assume that
S has no tangency points. ThenK is S-integrable and�

M
KdAs = 2π(χ(M+) − χ(M−)).

Once applied to the special subclass of Riemannian
structures, such a result simply states that the integral
of the curvature of a parallelizable compact oriented
surface (i.e., the torus) is equal to zero. In a sense,
in the standard Riemannian construction the topology
of the surface gives a constraint on the total curva-
ture through the Gauss-Bonnet formula, whereas for an
almost-Riemannian structure induced by a single pair
of vector fields the total curvature is equal to zero and
the topology of the manifold constrains the metric to be
singular on a suitable set.

III. CHARACTERIZATION OF TRIVIALIZABLE 2-ARS

Our objective is to complete the analysis in the more
complicated case in whichS has tangency points. The
main result concerns the relation between the trivi-
alizability of an almost-Riemannian structure and the
topological properties of the distribution and the singular
locus associated to it. This theorem generalizes the
condition χ(M+) = χ(M−), which is necessary (see
Lemma 5 of [?]) for an almost-Riemannian structure
without tangency points to be trivializable, to the case
in which tangency points exist.

Theorem 3:Let M be a compact oriented two-
dimensional manifold endowed with an oriented almost-
Riemannian structureS satisfying the generic hypothesis
(H0). ThenS is trivializable if and only ifχ(M+) −
χ(M−) + τ(S) = 0, where τ(S) is the number of
rotations of ∆ on Z computed with respect to the
orientation induced byM+ on Z.
The integerτ(S) is defined as follows. Take a global
notion of angle onTM , independent ofS. Such an
angle can be induced by any fixed, globally defined,

Riemannian metricg0 on M . Consider an embedded
closed surfaceN ⊂ M with the induced orientation.
Suppose∂N is nonempty andΥ is a one-dimensional
distribution on ∂N . We call number of rotationsof
Υ on a connected componentW of ∂N the degree
of any continuous (and therefore smooth) choiceϑ :
W → R/πZ of the g0-angle betweenTpW and Υ(p),
computed with respect to the orientation ofW induced
by N . We denote it byτN (Υ,W ) and we define
τN (Υ, ∂N) as the sum ofτN (Υ,W ) asW varies among
the connected components of∂N. Using this definition,
we can associate to any oriented 2-ARSS and any
connected componentW of Z the integerτM+(∆,W ).
We denoteτ(S) the numberτM+(∆,Z).

As a direct consequence of Theorem 3 and of the
simple remark thatχ(M+) + χ(M−) = χ(M) is even
we obtain that ifS is trivializable thenτ(S) is even.

The proof of the sufficiency of the conditionχ(M+)−
χ(M−) + τ(S) = 0 is rather technical (for details see
[?]). It consists of the construction of a globally defined
vector fieldX such thatX ∈ ∆ andX has only non-
degenerate zeros lying inZ. First, we defineX on a
tubular neighborhood ofZ in such a way thatX ∈ ∆
and has only a finite number of non-degenerate zeros
lying in Z, the algebraic number of zeros to be found
later. After that, we extendX to the entire manifold. The
hypothesisχ(M+) − χ(M−) + τ(S) = 0 allows us to
find an extension without introducing further zeros. This
can be done by assigning to each connected component
of Z a suitable integer representing the algebraic number
of zeros ofX on that component. Taking into account
the topological contraints on the indeces of zeros of
vector fields, to find these integers one has to solve a
linear system where coefficients depend on the Euler
characteristic of the connected components ofM \Z and
on the number of rotations of∆ along each connected
component ofZ.

The construction of a solution to this system is based
on a correspondence between two-dimensional almost-
Riemannian structures and bipartite graphs. Indeed, to
an almost-Riemannian structure corresponds the bipar-
tite graph whose vertices and edges are the connected
components ofM \Z andZ, respectively. Two vertices
M1 and M2 are connected by an edgeZ12 if and
only if Z12 ⊂ M1 ∩ M2. The bipartite nature of
the graph follows from the fact that a pair of vector
fields generating∆ changes orientation while crossing
Z, so thatZ = M+ ∩ M−. There is a natural way
of labeling vertices and edges of the graph associated
with an almost-Riemannian structure. Indeed, we assign
to each vertexMl the numberχ(Ml) (whereχ denotes



the Euler characteristic of manifolds) and to each edge
Zij the integerτM+(∆,Zij). The graph associated toS
is invariant under the action of diffeomorphisms ofM
and this is why such graphs could be a useful instrument
for a classification of almost-Riemanian structures.

The graph associated to the almost-Riemannian struc-
ture can be used to assign to each connected compontent
of Z the suitable algebraic number of zeros of the
vector fieldX . The existence of an extension ofX with
no further zeros is now a consequence of the choice
made on the location of zeros and of the condition
χ(M+) − χ(M−) + τ(S) = 0.

Once a vector fieldX ∈ ∆ with non-degenerate zeros
lying in Z is constructed, we can assume it to have norm
one by applying Lemma 1 below (for the proof see [?]).

Lemma 1:Let F be a vector field such thati) F ∈
∆, ii) its zeros are non-degenerate and lie inZ. Then
|F | =

√

G(F, F ) is a never vanishing smooth function.
In particular,F̂ = F/|F | is a well defined vector field
of norm one.

Finally, to find a generator of∆ with norm one and
orthogonal toX it is sufficient to rotateX in the sense
of the following Lemma (see Lemma 4 in [?]).

Lemma 2:Let F1 be a vector field such thati) F1 ∈
∆, ii) |F1| = 1. Let, moreover,θ : M → R/2πZ be a
smooth map. Then there exists a vector fieldF2 such
that F2 ∈ ∆, |F2| = 1 andG(F1, F2) = cos θ on M .
In particular, whenθ ≡ π/2, (F1, F2) is an orthonormal
frame ofS.

The proof of the necessity of the conditionχ(M+)−
χ(M−) + τ(S) = 0 is based on the existence of a
global orthonormal frame whose elements have only
non-degenerate zeros lying inZ. Once a global or-
thonormal frame exists, one defines a suitable smooth
angleϕ : M → R/2πZ such that the rotation of the
given frame in the sense of Lemma 2 by angleϕ has
the desired property. For more details see [?].

IV. S-INTEGRABILITY IN PRESENCE OF TANGENCY

POINTS

A. Numerical simulations

As concerns the notion of integrability of the curva-
ture with respect to the Riemannian density onM \ Z,
it turns out that the hypothesis made in [?] about the
absence of tangency points is not just technical. Indeed,
in this section we provide some numerical simulations
to support the conjecture that, in presence of tangency
points, �
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Fig. 1. RegionsΩ± where to apply Riemann Gauss-Bonnet formula

does not converge asε tends to zero.
From the proof of Theorem 2 we know that far from

tangency points the integral of geodesic curvature along
∂M+

ε and∂M−
ε offset each other forε going to zero.

Hence, to understand whether the presence of a tangency
point may lead to non-S-integrability ofK it is sufficient
to compute the geodesic curvature of∂M+

ε and∂M−
ε in

a neighborhood of such a point. More precisely consider
the almost-Riemannian structure on the plane for which
(1, 0) and(0, y− x2) is an orthonormal frame. For this
system one hasg = dx2 + (y − x2)−2dy2, and

K =
−2

(

3 x2 + y
)

(x2 − y)
2 .

Notice that, in contrast with the behavior of the cur-
vature in the Grushin plane (see [?]), in this case
lim supq→(0,0) K(q) = +∞, while we still have
lim infq→(0,0) K(q) = −∞. By symmetry reasons, for
every ε > 0, the sets∂M+

ε and ∂M−
ε are smooth

manifolds except at their intersections with the vertical
axis x = 0, which is the cut locus for the problem of
minimizing the distance fromZ = {(x, x2) | x ∈ R}.
Fix 0 < a < 1 and consider the two geodesics starting
from the point (a, a2) and minimizing (locally) the
distance fromZ. Let P+ and P− be the two points
along these geodesics at distanceε from Z. Denote by
γ+ andγ− the portions of∂M+

ε and∂M−
ε connecting

the vertical axis to the pointsP+ andP−, oriented as
in Figure 1.
It is easy to approximate numericallyγ+ and γ−

by broken lines, but the evaluation of the integral
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Fig. 2. Divergence of theS-integral ofK

of their geodesic curvatures is very unstable since its
computation involves the second derivative of the curve
parameterized by arclength. To avoid this problem, we
rather apply the Riemannian Gauss-Bonnet formula on
the regionsΩ+ and Ω− introduced in Figure 1. This
works better since the integral of the Gaussian curvature
on Ω+ and Ω− is numerically stable, and the integral
of the geodesic curvature on horizontal and vertical
segments can be computed analytically (in particular it
is always zero on horizontal segments).
Figure 2 shows the value of

ε

(�
γ+

Kgds−

�
γ−

Kgds

)

for a = 0.1 and ε varying in the interval[0.01, 0.04].
The graph seems to converge asε tends to zero to a
nonzero constant, strongly hinting at the divergence of�

Mε
KdAs.

Similar pictures have been obtained for ARS onR
2

generated by(1, 0), (0, y−x2−cx3) with some constant
c different from zero.

B. Gauss-Bonnet formula with tangency points

One possible explanation of the divergence of the
limit (2) is the interaction between different orders
in the asymptotic expansion of the almost-Riemannian
distance. To avoid this interference, we define a 3-scale
integral of the curvature. This can be done by introduc-
ing around each tangency pointqi, i ∈ {1, . . . ,mS}, a
two parameters “rectangle shaped” neighborhoodBi

δ1,δ2

(δ1 andδ2 playing the role of lengths of the sides of the
rectangle) built as follows. We consider a parameterized
curve(−1, 1) ∋ s 7→ w(s) passing through the tangency
point w(0) = qi and transversal to the distribution. We
then consider, for eachs ∈ (−1, 1), the geodesicγs

(parameterized by arclength) such thatγs(0) = w(s)
and minimizing locally the distance from{w(s) : s ∈
(−1, 1)}.

γ−δ1
(−δ2)

γ−δ1
(δ2)

qi

w(δ1)

M+

M−

Z

γδ1
(δ2)

γδ1
(−δ2)

w(−δ1)

Fig. 3. The rectangular boxBi
δ1,δ2

For δ1, δ2 sufficiently small, the rectangleBi
δ1,δ2

is
the subset ofM containing the tangency pointqi and
having as boundary (see Figure 3)

γδ1
([−δ2, δ2]) ∪ γ[−δ1,δ1](δ2)∪

∪γ−δ1
([−δ2, δ2]) ∪ γ[−δ1,δ1](−δ2). (3)

Let Mε,δ1,δ2
= Mε \

⋃mS

i=1B
i
δ1,δ2

. We say thatK is
3-scaleS-integrable(3-S-integrablefor short) if

lim
δ1→0

lim
δ2→0

lim
ε→0

�
Mε,δ1,δ2

KdAs (4)

exists and is finite. In this case we denote such a limit
by

�
M
KdAs. Notice that ifS has not tangency points,

then the concept ofS-integrability and 3-S-integrability
coincide. This more general notion of integrability is
used in next theorem which generalizes Theorem 2.

Theorem 4:Let M be a compact oriented two-
dimensional manifold. For an oriented almost-
Riemanian structure onM satisfying the generic
hypothesis(H0), K is 3-scaleS-integrable and�

M

KdAs = 2π(χ(M+) − χ(M−) + τ(S)).

The order in which the limits are taken is important.
Indeed, if the order is permuted, then the result given
in Theorem 4 does not hold anymore. Recall that the
normal form (F3) is not totally intrinsic, since the func-
tions ψ andφ depend on the choice of a parametrized
smooth curve passing through the tangency pointq0
and transversal to∆(q0). However, the result given in
Theorem 4 does not depend on this choice. An inter-
esting question is whether a canonical way of choosing
these manifolds and their parameterizations exists. This
is related to the problem of finding intrinsic normal
forms for Grushin and tangency points.



The proof of Theorem 4 (for details see [?]) is based
on a result given in [?] which is a Gauss-Bonnet formula
for two-dimensional almost-Riemannian structures on
admissible domains with boundary.

V. CONCLUSIONS

Theorems 3 and 4 allow us to complete the analysis
between the integral of the curvature and the topology
of the manifold for two-dimensional almost-Riemannian
structures (see Corollary 1 in [?]). Indeed, as a con-
sequence of Theorems 3 and 4 we get the following
corollary.

Corollary 1: Let M be a compact oriented two-
dimensional manifold. For an oriented almost-
Riemannian structureS on M satisfying the generic
hypothesis(H0) we have

�
M
KdAs = 0 if and only if

S is trivializable.
In particular, if S has not tangency points then�

M
KdAs = 0 if and only if S is trivializable.


